Robertsonian translocations (ROBs) involving chromosome 21 are found in approximately 5% of patients with Down syndrome (DS). The most common nonhomologous ROB in DS is rob(14q21q). Aberrant recombination is associated with nondisjunction (NDJ) leading to trisomy 21. Haplotype analysis of 23 patients with DS and de novo rob(14q21q) showed that all translocations and all nondisjoined chromosomes 21 were maternally derived. Meiosis II NDJ occurred in 21 of 23 families. For these, a ROB DS chromosome 21 genetic map was constructed and compared to a normal female map and a published trisomy 21 map derived from meiosis II NDJ. The location of exchanges differed significantly from both maps, with a significant shift to a more distal interval in the ROB DS map. The shift may perturb segregation, leading to the meiosis II NDJ in this study, and is further evidence for crossover interference. More importantly, because the event in the short arms that forms the de novo ROB influences the placement of chiasmata in the long arm, it is most likely that the translocation formation occurs through a recombination pathway in meiosis. Additionally, we have demonstrated that events that occur in meiosis I can influence events, such as chromatid segregation in meiosis II, many decades later.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC379241PMC
http://dx.doi.org/10.1086/367547DOI Listing

Publication Analysis

Top Keywords

meiosis ndj
12
translocation formation
8
influences placement
8
derived meiosis
8
meiosis
6
obligate short-arm
4
short-arm exchange
4
exchange novo
4
novo robertsonian
4
robertsonian translocation
4

Similar Publications

Study Question: Is there an association between morphokinetic variables of meiotic maturation and the severity of aneuploidy following maturation (IVM) in the mouse?

Summary Answer: The severity of meiotic aneuploidy correlates with an extended time to first polar body extrusion (tPB1) and duration of meiosis I (dMI).

What Is Known Already: Morphokinetic variables measured using time-lapse technology allow for the non-invasive evaluation of preimplantation embryo development within clinical assisted reproductive technology (ART). We recently applied this technology to monitor meiotic progression during IVM of mouse gametes.

View Article and Find Full Text PDF

Accurate segregation of homologous chromosomes during meiosis depends on both the presence and regulated placement of crossovers (COs). The centromere effect (CE), or CO exclusion in pericentromeric regions of the chromosome, is a meiotic CO patterning phenomenon that helps prevent nondisjunction (NDJ), thereby protecting against chromosomal disorders and other meiotic defects. Despite being identified nearly a century ago, the mechanisms behind this fundamental cellular process remain unknown, with most studies of the CE focusing on local influences of the centromere and pericentric heterochromatin.

View Article and Find Full Text PDF

Mathematical modeling of human oocyte aneuploidy.

Proc Natl Acad Sci U S A

May 2020

Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ 08854;

Aneuploidy is the leading contributor to pregnancy loss, congenital anomalies, and in vitro fertilization (IVF) failure in humans. Although most aneuploid conceptions are thought to originate from meiotic division errors in the female germline, quantitative studies that link the observed phenotypes to underlying error mechanisms are lacking. In this study, we developed a mathematical modeling framework to quantify the contribution of different mechanisms of erroneous chromosome segregation to the production of aneuploid eggs.

View Article and Find Full Text PDF

The risk of meiotic segregation errors increases dramatically during a woman's thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion is oxidative damage.

View Article and Find Full Text PDF

Background & Objectives: Aneuploids are the most common chromosomal abnormality in liveborns and are usually the result of non-disjunction (NDJ) in meiosis. Copy number variations (CNVs) are large structural variations affecting the human genome. CNVs influence critical genes involved in causing NDJ by altering their copy number which affects the clinical outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!