Purpose: To devise methods for unequivocal identification of activated retinal microglia in experimental autoimmune uveoretinitis (EAU) and to investigate their role in the development of EAU.
Methods: A group of Lewis rats underwent optic nerve axotomy with the application of N-4-(4-didecylaminostyryl)-N methylpyridinium iodide (4Di-10ASP) at the axotomy site. On days 3, 14, and 38 after axotomy, the rats were killed, the eyes were enucleated, and the retinas were stained for OX42. Another group of such axotomized rats were immunized with S-antigen peptide and were killed on days 7 through 12 after the injection with peptide. The enucleated eyes were stained for OX42 and examined by confocal microscope. After axotomy, bone marrow (Y-->X) chimeric rats were injected with S-antigen peptide and were killed on days 10 and 12 after injection. The retinas were evaluated by PCR with Y-specific primers. Finally, a group of axotomized rats was injected with the S-antigen peptide and killed on days 6, 8, 9, and 10 after injection. Their enucleated eyes were examined for microglial expression of TNFalpha and for generation of peroxynitrite.
Results: In the axotomized, non-EAU eyes, 4Di-10ASP-labeled ganglion cells were detectable on days 3 and 14, and 4Di-10ASP-containing OX42-positive cells (microglia) were found in the nerve fiber and other inner retinal layers on days 14 and 38. The S-antigen peptide-injected rats showed migration of the microglia (4Di-10ASP-positive and OX42-positive) to the photoreceptor cell layer on day 9, and these cells increased in number at this site on day 10. No macrophages (OX42-positive and 4Di-10ASP-negative) were present at this early stage of EAU, but such cells appeared in the retina on days 11 and 12. PCR of the chimeric EAU retinas showed an absence of the Y chromosome-amplified product on day 10, but the presence of this product was detected on day 12. The expression of TNFalpha and generation of peroxynitrite were noted in the migrated microglia at the photoreceptor cell layer on days 9 and 10 of EAU.
Conclusions: In the early phase of EAU, the microglia migrate to the photoreceptor cell layer where they generate TNFalpha and peroxynitrite. Such microglial migration and activation take place before infiltration of the macrophages. These findings indicate a novel pathogenic mechanism of EAU, in which retinal microglia may initiate retinitis with subsequent recruitment of circulation-derived phagocytes, leading to the amplification of uveoretinitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.02-0199 | DOI Listing |
Curr Eye Res
January 2025
Ophthalmology Department, Peking University People's Hospital, Beijing, China.
Purpose: Chronic inflammation plays an important role in the pathogenesis of choroidal neovascularization (CNV). This study aimed to investigate the effect of the CHF5074, a γ-secretase inhibitor, on angiogenesis in a laser-induced CNV model and elucidate its possible molecular mechanism.
Methods: Male C57/BL6J mice aged between 6 to 8 weeks were employed to set up a laser-induced model of CNV.
Invest Ophthalmol Vis Sci
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.
Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.
Int J Mol Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.
View Article and Find Full Text PDFEur J Neurol
January 2025
Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine Berlin and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Background: Hyperreflective retinal foci (HRF) visualized by optical coherence tomography (OCT) potentially represent clusters of microglia. We compared HRF frequencies and their association with retinal neurodegeneration between people with clinically isolated syndrome (pwCIS), multiple sclerosis (pwMS), aquaporin 4-IgG positive neuromyelitis optica spectrum disorder (pwNMOSD), and healthy controls (HC)-as well as between eyes with (ONeyes) and without a history of optic neuritis (ONeyes).
Methods: Cross-sectional data of pwCIS, pwMS, and pwNMOSD with previous ON and HC were acquired at Charité-Universitätsmedizin Berlin.
Invest Ophthalmol Vis Sci
January 2025
Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Purpose: In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!