Pathogenic role of retinal microglia in experimental uveoretinitis.

Invest Ophthalmol Vis Sci

A. Ray Irvine Ocular Pathology Laboratory, Doheny Eye Institute, University of Southern California Keck School of Medicine, 1450 San Pablo Street, DVRC-211, Los Angeles, CA 90033, USA.

Published: January 2003

Purpose: To devise methods for unequivocal identification of activated retinal microglia in experimental autoimmune uveoretinitis (EAU) and to investigate their role in the development of EAU.

Methods: A group of Lewis rats underwent optic nerve axotomy with the application of N-4-(4-didecylaminostyryl)-N methylpyridinium iodide (4Di-10ASP) at the axotomy site. On days 3, 14, and 38 after axotomy, the rats were killed, the eyes were enucleated, and the retinas were stained for OX42. Another group of such axotomized rats were immunized with S-antigen peptide and were killed on days 7 through 12 after the injection with peptide. The enucleated eyes were stained for OX42 and examined by confocal microscope. After axotomy, bone marrow (Y-->X) chimeric rats were injected with S-antigen peptide and were killed on days 10 and 12 after injection. The retinas were evaluated by PCR with Y-specific primers. Finally, a group of axotomized rats was injected with the S-antigen peptide and killed on days 6, 8, 9, and 10 after injection. Their enucleated eyes were examined for microglial expression of TNFalpha and for generation of peroxynitrite.

Results: In the axotomized, non-EAU eyes, 4Di-10ASP-labeled ganglion cells were detectable on days 3 and 14, and 4Di-10ASP-containing OX42-positive cells (microglia) were found in the nerve fiber and other inner retinal layers on days 14 and 38. The S-antigen peptide-injected rats showed migration of the microglia (4Di-10ASP-positive and OX42-positive) to the photoreceptor cell layer on day 9, and these cells increased in number at this site on day 10. No macrophages (OX42-positive and 4Di-10ASP-negative) were present at this early stage of EAU, but such cells appeared in the retina on days 11 and 12. PCR of the chimeric EAU retinas showed an absence of the Y chromosome-amplified product on day 10, but the presence of this product was detected on day 12. The expression of TNFalpha and generation of peroxynitrite were noted in the migrated microglia at the photoreceptor cell layer on days 9 and 10 of EAU.

Conclusions: In the early phase of EAU, the microglia migrate to the photoreceptor cell layer where they generate TNFalpha and peroxynitrite. Such microglial migration and activation take place before infiltration of the macrophages. These findings indicate a novel pathogenic mechanism of EAU, in which retinal microglia may initiate retinitis with subsequent recruitment of circulation-derived phagocytes, leading to the amplification of uveoretinitis.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.02-0199DOI Listing

Publication Analysis

Top Keywords

retinal microglia
12
s-antigen peptide
12
peptide killed
12
killed days
12
days injection
12
photoreceptor cell
12
cell layer
12
microglia experimental
8
days
8
stained ox42
8

Similar Publications

Purpose: Chronic inflammation plays an important role in the pathogenesis of choroidal neovascularization (CNV). This study aimed to investigate the effect of the CHF5074, a γ-secretase inhibitor, on angiogenesis in a laser-induced CNV model and elucidate its possible molecular mechanism.

Methods: Male C57/BL6J mice aged between 6 to 8 weeks were employed to set up a laser-induced model of CNV.

View Article and Find Full Text PDF

Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.

Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.

View Article and Find Full Text PDF

The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.

Int J Mol Sci

January 2025

Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan.

Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies.

View Article and Find Full Text PDF

Background: Hyperreflective retinal foci (HRF) visualized by optical coherence tomography (OCT) potentially represent clusters of microglia. We compared HRF frequencies and their association with retinal neurodegeneration between people with clinically isolated syndrome (pwCIS), multiple sclerosis (pwMS), aquaporin 4-IgG positive neuromyelitis optica spectrum disorder (pwNMOSD), and healthy controls (HC)-as well as between eyes with (ONeyes) and without a history of optic neuritis (ONeyes).

Methods: Cross-sectional data of pwCIS, pwMS, and pwNMOSD with previous ON and HC were acquired at Charité-Universitätsmedizin Berlin.

View Article and Find Full Text PDF

C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model.

Invest Ophthalmol Vis Sci

January 2025

Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Purpose: In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!