A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

S(+)-ketamine attenuates myogenic motor-evoked potentials at or distal to the spinal alpha-motoneuron. | LitMetric

Unlabelled: We investigated the effect of S(+)-ketamine on spinal cord evoked potentials (ESCPs) and myogenic motor-evoked potentials after electrical stimulation of the motor cortex in a rabbit model. This study was designed to characterize the relationship between ESCP characteristics and corresponding changes in compound muscle action potentials (CMAPs) derived from fore and hind limbs. Direct (D) and indirect (I) corticospinal volleys (ESCP) from the upper and lower thoracic spinal cord, recorded by two bipolar epidural electrodes, were assessed during IV administration of 0.02, 0.05, 0.1, and 0.2 mg. kg(-1) x min(-1) of S(+)-ketamine, each before and after neuromuscular blockade (0.4 mg/kg of cisatracurium), in 16 New Zealand White rabbits after single-pulse bipolar electrical stimulation of the motor cortex at 50 (threshold), 60, and 70 V. CMAP amplitudes at fore and hind limbs were significantly suppressed (P < 0.01) during infusion at 0.1 and 0.2 mL x kg(-1) x min(-1), whereas neither corresponding D- nor I-waves were altered. Similar findings were obtained during variation of stimulus amplitude (50-70 V). Multivariate regression analysis of CMAP amplitudes and various ESCP characteristics demonstrated no apparent interparametric association. These findings indicate that S(+)-ketamine modulates CMAP independent from corticospinal D- and I-wave-mediated facilitation at or distal to the spinal alpha-motoneuron.

Implications: S(+)-Ketamine combines several anesthetic properties suitable for total IV neuroanesthesia, including minimal effects on neurophysiological monitoring. Recording of neural and myogenic responses after electrical stimulation of the motor cortex indicates that S(+)-ketamine modulates myogenic motor-evoked potentials by a peripheral mechanism at or distal to the spinal alpha-motoneuron.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000539-200301000-00048DOI Listing

Publication Analysis

Top Keywords

myogenic motor-evoked
12
motor-evoked potentials
12
distal spinal
12
electrical stimulation
12
stimulation motor
12
motor cortex
12
spinal alpha-motoneuron
8
spinal cord
8
escp characteristics
8
fore hind
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!