Tumor necrosis factor (TNF) increases epithelial permeability in many model systems. Protein kinase C (PKC) isozymes regulate epithelial barrier function and alter ligand-receptor interactions. We sought to define the impact of PKC on TNF-induced barrier dysfunction in T84 intestinal epithelia. TNF induced a dose- and time-dependent fall in transepithelial electrical resistance (TER) and an increase in [(3)H]mannitol flux. The TNF-induced fall in TER was not PKC mediated but was prevented by pretreatment with bryostatin-1, a PKC agonist. As demonstrated by a pattern of sensitivity to pharmacological inhibitors of PKC, this epithelial barrier preservation was mediated by novel PKC isozymes. Bryostatin-1 reduced TNF receptor (TNF-R1) surface availability, as demonstrated by radiolabeled TNF binding and cell surface biotinylation assays, and increased TNF-R1 receptor shedding. The pattern of sensitivity to isozyme-selective PKC inhibitors suggested that these effects were mediated by activation of PKC-epsilon. In addition, after bryostatin-1 treatment, PKC-delta and TNF-R1 became associated, as determined by mutual coimmunoprecipitation assay, which has been shown to lead to receptor desensitization in neutrophils. TNF-induced barrier dysfunction occurs independently of PKC, but selective modulation of novel PKC isozymes may regulate TNF-R1 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00214.2002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!