There is ample evidence to show the existence of center I(1)-imidazoline receptors that are involved in the regulation of cardiovascular activities. The purpose of this study was to examine the possible role of I(1)-imidazoline receptors and alpha(2)-adrenoceptors within the caudal ventrolateral medulla (CVLM) in mediating the baroreceptor reflex in anesthetized rats. Unilateral microinjection of idazoxan (2 nmol in 50 nl), a mixed antagonist of I(1)-imidazoline receptors and alpha(2)-adrenoceptors, into the CVLM significantly (P<0.01) decreased blood pressure (BP), heart rate (HR), and the firing rate of presympathetic neurons in the rostral ventrolateral medulla (RVLM) by 21+/-6 mmHg, 25+/-5 beats per min and 3.5+/-0.9 spikes/s, respectively. Moreover, unilateral injection of idazoxan into the CVLM significantly (P<0.01) reduced the inhibitory responses of the ipsilateral RVLM presympathetic neurons evoked by stimulation of aortic nerve and elevation of BP, and partially inhibited the neuronal cardiac cycle-related rhythm. Depressor responses evoked by aortic nerve stimulation were significantly (P<0.01) attenuated 10 and 20 min after bilateral microinjection of idazoxan (2 nmol in 50 nl for each side) into the CVLM (-20+/-4 and -30+/-4 vs. -40+/-1 mmHg). However, injection of yohimbine (500 pmol in 50 nl), a selective alpha(2)-adrenoceptor antagonist, into the CVLM did not affect the resting cardiovascular activities and baroreceptor reflex. It is concluded that the CVLM I(1)-imidazoline receptors are involved in maintenance of tonic cardiovascular activities and transmission of the baroreceptor reflex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(02)03732-0DOI Listing

Publication Analysis

Top Keywords

i1-imidazoline receptors
16
baroreceptor reflex
8
caudal ventrolateral
8
ventrolateral medulla
8
receptors alpha2-adrenoceptors
8
involvement i1-imidazoline
4
receptors
4
receptors baroreceptor
4
reflex caudal
4
medulla rats
4

Similar Publications

Here we assess whether neuropathic pain hypersensitivity is attenuated by spinal administration of the imidazoline I-receptor agonist LNP599 and whether the attenuation involves co-activation of α-adrenoceptors. Spared nerve injury (SNI) model of neuropathy was used to induce mechanical hypersensitivity in male and female rats with a chronic catheter for intrathecal drug administrations. Mechanical sensitivity and heat nociception were assessed behaviorally in the injured limb.

View Article and Find Full Text PDF

Regulation of I1-imidazoline receptors on the sedation effect of dexmedetomidine in mice.

Naunyn Schmiedebergs Arch Pharmacol

August 2024

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.

Dexmedetomidine has been used as a sedative drug in the clinic for a long time. Many studies demonstrated that the sedative mechanism of dexmedetomidine might be related to the activation of α2-adrenoceptor (α2AR). In addition, it was reported that dexmedetomidine had some affinity for the I1-imidazoline receptor (I1R); however, the role of I1R in dexmedetomidine-induced sedative effects and its possible mechanism are poorly studied.

View Article and Find Full Text PDF

Nischarin Is Not the Functional I1 Imidazoline Receptor Involved in Blood Pressure Regulation.

J Cardiovasc Pharmacol

February 2022

Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire-UR7296, CRBS, Faculté de Médecine, Université de Strasbourg, France .

Imidazoline receptor antisera selected/Nischarin was proposed several years ago as the functional entity for the I1 medullary receptors (I1Rs) targeted, together with α2-adrenoceptors, by the centrally acting antihypertensive drugs, such as clonidine. The objective of this study was to test this assumption using a pyrroline analog of clonidine, LNP599, which, unlike clonidine and related compounds, displays high selectivity toward I1Rs. Cardiovascular effects of LNP599 (3 mg/kg intravenous) were evaluated in anesthetized, artificially ventilated nischarin mutant rats expressing a truncated form of nischarin lacking the putative imidazoline binding site.

View Article and Find Full Text PDF

Dexmedetomidine (DEX), an α2-adrenoreceptor (α2-AR) and imidazoline receptor agonist, is most often used for the sedation of patients in the intensive care unit. Its administration is associated with an increased incidence of bradycardia; however, the precise mechanism of DEX-induced bradycardia has yet to be fully elucidated. This study was undertaken to examine whether DEX modifies pacemaker activity and the underlying ionic channel function through α2-AR and imidazoline receptors.

View Article and Find Full Text PDF

The activation of imidazoline 1 (I) receptors is suggested to stimulate the respiratory drive in newborn rats. Here, we immunohistochemically examined whether nischarin, an I receptor candidate protein, is expressed in the ventrolateral medulla, where cardiorespiratory centers are located. Newborn rats (age, 3-5 days) were deeply anesthetized with isoflurane; the brainstem was dissected, sectioned sagittally, and labeled with nischarin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!