Objective: Members of the Wnt signaling protein family are expressed during cartilage development and skeletogenesis, but their roles and mechanisms of action in those processes remain unclear. Recently, we found that beta-catenin-LEF/TCF-dependent Wnt signaling stimulates chondrocyte maturation and hypertrophy and extracellular matrix calcification in vitro, events normally associated with cartilage-to-bone transition during skeletogenesis. Thus, we tested here whether activation of this pathway promotes endochondral ossification.

Design: Chick chondrocytes were infected with avian retroviral expression vectors encoding constitutive-active (CA) or dominant-negative (DN) forms of LEF, which activate or block beta-catenin-dependent Wnt signaling respectively. These cells and companion uninfected control cells were seeded into type I collagen gels and transplanted intramuscularly into nude mice. The resulting ectopic tissue masses forming over time in vivo were subjected to histological and molecular biological analyses.

Results: Transplantation of chick chondrocytes induced de novo endochondral bone formation. In situ hybridization and RT-PCR using species-specific probes and primers showed that the ectopic cartilaginous tissue was avian and thus donor-derived, whereas the bone tissue was mouse and thus host-derived. CA-LEF-expressing ectopic tissue masses contained abundant bone and marrow, while DN-LEF-expressing masses contained little bone and lacked marrow.

Conclusions: Activation of beta-catenin-LEF/TCF-dependent Wnt signaling accelerates chondrocyte maturation and replacement of cartilage by bone.

Download full-text PDF

Source
http://dx.doi.org/10.1053/joca.2002.0863DOI Listing

Publication Analysis

Top Keywords

wnt signaling
16
beta-catenin-lef/tcf-dependent wnt
8
chondrocyte maturation
8
chick chondrocytes
8
ectopic tissue
8
tissue masses
8
masses contained
8
bone
5
activation beta-catenin-lef/tcf
4
beta-catenin-lef/tcf signal
4

Similar Publications

Background: Alzheimer's disease (AD) is the most common cause of age-related dementia, and the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles is associated with the neurodegeneration and cognitive impairment in this incurable disease. Growing evidence shows that epigenetic dysregulation through histone deacetylases (HDACs) plays a critical role in synaptic dysfunction and memory loss in AD, and HDACs have been highlighted as a novel class of anti-Alzheimer targets. Moreover, restoring Wnt/β-catenin signaling, which is greatly suppressed in AD brains, is a promising therapeutic strategy for AD.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Exploration of molecular markers is an ongoing focus in the field of bladder cancer research. Based on data from public databases, was identified as upregulated in bladder urothelial carcinoma (BLCA); however, its exact function and regulatory mechanism in this context remain unclear. To investigate the clinical implications of , we examined its levels in 90 BLCA and adjoining normal tissue samples.

View Article and Find Full Text PDF

Periodontal disease is recognized as a chronic multifactorial inflammatory condition initiated by dysbiosis within subgingival plaque biofilms. Antimicrobial peptides exhibit a wide spectrum of antimicrobial action, and thus, provide one of the first lines of host defense against oral pathogens. Aged garlic extract (AGE) is effective for preventing the progression of periodontal disease.

View Article and Find Full Text PDF

Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!