A CYP3A4 promoter-reporter gene construct has been used to assess the ability of 16 known (in vivo) and putative (in vitro) inducers to transactivate a CYP3A4 reporter gene in HepG2 cells. With the exception of pravastatin, the remaining 15 compounds transactivated the CYP3A4 reporter gene with differing inductive abilities (I(max):EC(50)) over two orders of magnitude, ranging from 1.1 (phenytoin) to 222.9 (lovastatin) in a receptor-supplemented system and it is proposed that the lack of response to pravastatin is due to loss of the known hepatic uptake transporter in HepG2 cells. In addition, reporter gene assays were used to investigate two promoter mutants namely a T to C change at -191 bp in the hepatic nuclear factor 3 binding site (HNF-3, -187 to -194 bp) and an A to G change at -205 bp in the oestrogen response element (ERE, -202 to -212 bp), which conferred differential responsiveness to steroid and xenobiotic inducers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0300-483x(02)00281-0 | DOI Listing |
PLoS One
January 2025
Department of Anatomy, University Hospital Essen, Essen, Germany.
Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Ophthalmology, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC 27517, USA.
Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!