5-epi-Aristolochene dihydroxylase (EAH) catalyzes unique stereo- and regiospecific hydroxylations of a bicyclic sesquiterpene hydrocarbon to generate capsidiol. To define functional and mechanistic features of the EAH enzyme, the utility of a coupled assay using readily available sesquiterpene synthases and microsomes from yeast overexpressing the EAH enzyme was determined. Capsidiol and deoxycapsidiol biosyntheses were readily measured in coupled assays consisting of 5-epi-aristolochene synthase and EAH as determined by the incorporation of radiolabeled farnesyl diphosphate into thin-layer chromatography-isolated products and verified by gas chromatography-mass spectrometry analysis. The assays were dependent on the amounts of synthase and hydroxylase protein added, the incubation times, and the presence of nicotinamide adenine dinucleotide phosphate. The utility of this coupled assay was extended by examining the relative efficiency of the EAH enzyme to catalyze hydroxylations of different sesquiterpene skeletons generated by other terpene synthases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-9861(02)00613-6 | DOI Listing |
Annu Rev Food Sci Technol
January 2025
4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:
Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America.
Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, Middlebury College, Middlebury, Vermont, United States of America.
Molybdenum blue colorimetry (MBC) is the dominant, well-established method used for determining total P in environmental media, including in organismal tissues. However, other elemental methods for P determination are available, including inductively coupled plasma mass spectrometry (ICP-MS). Given the extensive literature using MBC to determine P in organismal samples, it is important to assess P analyses by ICP-MS and MBC to ensure that the two methods produce comparable data.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
Heart Institute. Department of Cardiology. Cardiovascular Imaging Unit. Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.
Aims: How the underlying etiology and pathophysiology of left ventricular (LV) hypertrophy affects LA remodeling and function remains unexplored. The present study aims to investigate the influence of various hypertrophic phenotypes on LA remodeling and function.
Methods And Results: Patients with LV hypertrophy who underwent cardiac magnetic resonance (CMR) were compared to a control group.
Dalton Trans
January 2025
Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Göttingen Tammannstrasse 4, D-37077, Germany.
The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!