In the kidney, 25-hydroxyvitamin D(3) (25(OH)D) is converted to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D) by the 25(OH)D(3)-1alpha-hydroxylase enzyme, which contains a terminal cytochrome P450 (CYP1alpha) (systematic name: CYP27B1). Likewise, the kidney also produces 24,25-dihydroxyvitamin D(3) and 1,24,25-trihydroxyvitamin D(3) via a 24-hydroxylase whose terminal cytochrome P450 is CYP24. The purpose of this study was to characterize the transcriptional regulation of the CYP1alpha and CYP24 genes by parathyroid hormone (PTH) and 1,25(OH)(2)D in the kidney. Promoter-reporter gene constructs were transfected into opossum kidney (OK) cells, a renal proximal tubular cell line with endogenous PTH and 1,25(OH)(2)D receptors. PTH and forskolin stimulated CYP1alpha promoter activity via a cAMP-dependent pathway acting through the phosphorylation of CREB (cAMP-dependent response element-binding protein). This stimulation did not require new protein synthesis but may be modulated by short-lived proteins. 1,25(OH)(2)D modestly inhibited basal and forskolin-stimulated CYP1alpha promoter activity. The stimulation of CYP1alpha promoter activity by PTH and forskolin can account for the effect of these hormones on renal CYP1alpha mRNA levels. CYP24 promoter activity in transfected cells was increased by both 1,25(OH)(2)D and PTH, but there was no interaction between the two. The modest effects of 1,25(OH)(2)D and PTH on promoter activity and their lack of interaction do not account for the effects of these hormones on renal CYP24 mRNA levels. This suggests that there may be important posttranscriptional regulation of CYP24 mRNA in the kidney.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-9861(02)00636-7 | DOI Listing |
Chembiochem
January 2025
Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.
View Article and Find Full Text PDFCell Div
January 2025
Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.
Background: Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC).
Methods: SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR.
Nat Cancer
January 2025
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.
Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.
View Article and Find Full Text PDFJ Neurosci
January 2025
Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!