Porous polymer scaffolds are promising materials for neural tissue engineering because they offer valuable three-dimensional (3-D) supports for the in vitro and in vivo axonal growth and tissue expansion. At the time being, how the in vivo neuronal cell development depends on the scaffold 3-D architecture is unknown. Therefore, scanning electron micrographs of longitudinal sections of porous polylactide scaffolds and immunohistological sections of these scaffolds after implantation and neurofilament staining have been studied by image analysis. Pore orientation and axonal ingrowth have been investigated by spectral analysis on gray level SEM images. Binary image processing has been carried out and the binary images have been studied by spectral analysis in order to estimate the possible effect of the image noise on the real pattern. In addition to axonal orientation, density and length distribution of the regenerated axons into the polymer scaffold have been measured. Dependence of the axonal ingrowth on the 3D-polymer scaffold has been discussed on the basis of the collected data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(02)00423-4DOI Listing

Publication Analysis

Top Keywords

axonal ingrowth
12
image analysis
8
spectral analysis
8
axonal
5
image
4
analysis axonal
4
ingrowth polydl-lactide
4
porous
4
polydl-lactide porous
4
scaffolds
4

Similar Publications

Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans.

Bone Res

January 2025

The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.

Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202506000-00029/figure1/v/2024-08-05T133530Z/r/image-tiff Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits (tNGCs).

View Article and Find Full Text PDF

Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression.

View Article and Find Full Text PDF

Background: Previous investigations have shown that local application of nanoparticles presenting the carbohydrate moiety galactose-α-1,3-galactose (α-gal epitopes) enhance wound healing by activating the complement system and recruiting pro-healing macrophages to the injury site. Our companion in vitro paper suggest α-gal epitopes can similarly recruit and polarize human microglia toward a pro-healing phenotype. In this continuation study, we investigate the in vivo implications of α-gal nanoparticle administration directly to the injured spinal cord.

View Article and Find Full Text PDF

Discogenic pain is associated with deep nerve ingrowth in annulus fibrosus tissue (AF) of intervertebral disc (IVD). To model AF nerve ingrowth, primary bovine dorsal root ganglion (DRG) micro-scale tissue units are spatially organised around an AF explant by mild hydrodynamic forces within a collagen matrix. This results in a densely packed multicellular system mimicking the native DRG tissue morphology and a controlled AF-neuron distance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!