Analysis of oxidative DNA damage after human dietary supplementation with linoleic acid.

Food Chem Toxicol

Department of Health Risk Analysis and Toxicology, University Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.

Published: March 2003

It has been hypothesized that oxygen radicals generated by peroxidation of dietary linoleic acid may induce genetic damage and thereby increase cancer risk. We examined the effect of dietary supplementation with linoleic acid on the levels of oxidative DNA damage in peripheral lymphocytes and on the blood plasma antioxidant potential. Thirty volunteers received during 6 weeks either a high dose of linoleic acid (15 g/day), an intermediate dose of linoleic acid (7.5 g/day) or an isocaloric supplement without linoleic acid (15 g palmitic acid/day). After the intervention, no significant increase in oxidative DNA damage, measured as relative amounts of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) in DNA from peripheral lymphocytes, was observed in both high and intermediate linoleic acid-supplemented groups (increase of respectively 13 and 21%; P>0.05). Also, the differences between levels of oxidative DNA damage in the high or intermediate linoleic acid-supplemented group and the control group receiving palmitic acid (23% decrease) were not significant. Furthermore, no statistically significant differences were found between the total antioxidant capacities of blood plasma from the different experimental groups. Plasma levels of malondialdehyde, an important end-product of lipid peroxidation, were not increased after supplementation, nor were effects found on the plasma concentrations of retinol, alpha-tocopherol and beta-carotene. Despite the experimental design that excludes several forms of bias introduced in studies based on modulation of dietary composition, our results provide no indication of increased oxidative stress or genetic damage as a result of increased dietary intake of linoleic acid. Therefore, we see no scientific basis to reconsider the public health policy to stimulate the intake of polyunsaturated fatty acids aimed at the reduction of coronary heart diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0278-6915(02)00237-5DOI Listing

Publication Analysis

Top Keywords

linoleic acid
28
oxidative dna
16
dna damage
16
linoleic
9
dietary supplementation
8
supplementation linoleic
8
acid
8
genetic damage
8
levels oxidative
8
peripheral lymphocytes
8

Similar Publications

The urgent need to address the growing problem of antimicrobial resistance in multidrug-resistant bacteria requires the development of pioneering approaches to treatment. The present study aims to evaluate the antimicrobial potential of the essential oils (EOs) of Moringa oleifera (moringa), Cinnamomum verum (cinnamon), and Nigella sativa (black seed) and the synergistic effect of the mixture of these oils against Staphylococcus aureus MCC 1351. Statistical modeling revealed cinnamon oil had the highest individual antimicrobial potency, followed by black seed oil.

View Article and Find Full Text PDF

The and isomers of conjugated linoleic acid (CLA) are associated with anticancer and lipolytic effects in tissues, respectively, but in lactating cows, the latter isomer reduces the milk fat concentration, a detrimental aspect for the dairy industry, as it reduces the yield of milk derivatives. Therefore, the objective of this study was to evaluate the effect of providing protected palmitic acid (PA) to grazing lactating Holstein cows supplemented with soybean oil as a source of conjugated linoleic acid, on milk production, fat concentration and mitigation of milk fat depression. Nine multiparous Holstein cows were used, distributed in three groups of three cows each, with initial means of days in milk, live weight, milk production, and number of calvings: 124 ± 16 days, 494 ± 53 kg, 20.

View Article and Find Full Text PDF

Tender ginger is often used a fresh vegetable but hard to storage due to the delicate skin, high moisture content and prone to spoilage. In order to develop suitable preservation technology for tender ginger, the effects of vacuum packaging combined with different preservation temperatures (20-25 °C room temperature, 4 °C and 10 °C) on tender ginger shelf life were investigated. The results indicated that vacuum packaging combined with 4 °C (VP4) preservation could easily cause cold damage and postharvest physiological fluctuations.

View Article and Find Full Text PDF

Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.

View Article and Find Full Text PDF

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!