Small HIV-1-Tat peptides inhibit HIV replication in cultured T-cells.

Biochem Biophys Res Commun

The Wolfson Institute for Biomedical Research, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, UK.

Published: January 2003

Full-length soluble HIV-1 Tat protein has been shown to bind the CXCR4 receptor. Occupancy of CXCR4 by Tat inhibits infection of cells by T-tropic HIV-1. To understand if fragments of the Tat protein may have similar anti-HIV activity, we synthesized Tat peptides and tested their activity in tissue culture. Here, we report a sequence-specific contribution of Tat residues 31-35 to anti-HIV-1 activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(02)02903-0DOI Listing

Publication Analysis

Top Keywords

tat protein
8
tat
5
small hiv-1-tat
4
hiv-1-tat peptides
4
peptides inhibit
4
inhibit hiv
4
hiv replication
4
replication cultured
4
cultured t-cells
4
t-cells full-length
4

Similar Publications

Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Introduction: Tat protein is a trans-activator of HIV-1 genome transcription, with additional functions including the ability to induce the chronic inflammatory process. Natural amino acid polymorphisms in Tat may affect its functional properties and the course of HIV infection. The aim of this work is to analyze the marks of Tat consensus sequences in non-A6 HIV-1 variants characteristic of the Russian Federation, as well as study natural polymorphisms in Tat CRF63_02A6 and subtype B variants circulating in Russia.

View Article and Find Full Text PDF

GOPhage: protein function annotation for bacteriophages by integrating the genomic context.

Brief Bioinform

November 2024

Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong (SAR), China.

Bacteriophages are viruses that target bacteria, playing a crucial role in microbial ecology. Phage proteins are important in understanding phage biology, such as virus infection, replication, and evolution. Although a large number of new phages have been identified via metagenomic sequencing, many of them have limited protein function annotation.

View Article and Find Full Text PDF

The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!