A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of linear alkylbenzene sulfonates on functional diversity of microbial communities in soil. | LitMetric

Effects of linear alkylbenzene sulfonates on functional diversity of microbial communities in soil.

Environ Toxicol Chem

Danish Institute of Agricultural Sciences, Department of Crop Physiology and Soil Science, Research Centre Foulum, P.O. Box 50, DK-8830 Tjele, Denmark.

Published: January 2003

Linear alkylbenzene sulfonates (LAS) often occur in sewage sludge that is applied to agricultural soil. Here LAS may affect the microbial activity, which is an important basis for nutrient cycling. Previous studies have shown that single bacterial species and specific soil processes can be very sensitive to LAS. Here we report that two levels of LAS, 22 and 174 mg/kg dry weight soil, had little or no significant influence of the functional diversity of bacteria in a sandy soil, as tested by community-level physiological profiles. Briefly, these profiles are a characterization of the microbial communities based on the pattern of substrate utilization in 96-well microtiter plates (Biolog EcoPlates). Sandy agricultural soil was incubated in duplicate 1-L mesocosms with or without LAS, and bacteria were extracted after one, two, and four weeks. During incubation, more than 98 and 93% of LAS added to 22 and 174 mg/kg dry weight soil was degraded, respectively. The presence of LAS at 174 mg/kg dry weight caused a higher number of bacteria in the soil extracts, maximally corresponding to 2.5 times the numbers in LAS-free soil (1.8 x 10(7) cells/g dry wt soil) after four weeks of incubation. No inhibitory effect of LAS was observed when the substrate utilization data were analyzed for substrate richness and diversity (Shannon-Weaver indices). Principal component analysis, however, showed that the pattern of substrate utilization in soil with the highest LAS content (174 mg/kg dry wt) could be distinguished from control soil and soil with 22 mg LAS/kg dry weight. Yet the overall conclusion was that the functional diversity of the aerobic, heterotrophic bacterial community was rather insensitive to LAS.

Download full-text PDF

Source

Publication Analysis

Top Keywords

174 mg/kg
16
mg/kg dry
16
dry weight
16
soil
13
functional diversity
12
las 174
12
substrate utilization
12
las
10
linear alkylbenzene
8
alkylbenzene sulfonates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!