In human striatum and basolateral amygdala NADPH-d+ neurons were revealed (after Vincent et al., 1983); and in striatum strio-cortical neurons were also revealed using DiI marker (after Dahtstrom and Belichenko, 1995). The NADPH-d+ neurons were numerous in both formations. Staining of NADPH-d+ neurons with their processes, and our previous study of striatal and amygdalar human neurons by Golgi method made it possible to identify the species of neurons with their assessment as sparsely or densely branched. The main efferent neurons of striatum and basolateral amygdala (densely branched medium spiny and bushy spiny, respectively) and their densely branched interneurons were not marked. Efferent NADPH-d+ neurons included the most numerous ones in both formations. A projection of reticular striatal neurons to cortex was also shown. The NADPH-d+ interneurons belonged to sparsely branched forms. In striatum they included slender-dendritic and long-dendritic bipolars (numerous), ordinary bipolars, twisted and large poor-dendritic cells; in amygdala--the same bipolars and radial cells. Thus, the NADPH-d positive cells in the formations under study were represented by more "ancient" or less structurally complex cell forms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nadph-d+ neurons
16
striatum basolateral
12
basolateral amygdala
12
densely branched
12
neurons
9
neurons revealed
8
numerous formations
8
striatum
5
nadph-d+
5
[neurons human
4

Similar Publications

The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production.

View Article and Find Full Text PDF

We investigated aging-related changes in nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the spinal cord of aged dogs. At all levels of the spinal cord examined, NADPH-d activities were observed in neurons and fibers in the superficial dorsal horn (DH), dorsal gray commissure (DGC) and around the central canal (CC). A significant number of NADPH-d positive macro-diameter fibers, termed megaloneurites, were discovered in the sacral spinal cord (S1-S3) segments of aged dogs.

View Article and Find Full Text PDF

B-vitamins have been evaluated as a useful adjuvant therapy to treat pain. In spite of clinical and experimental evidence indicating the analgesic effect of B-vitamins, few studies have investigated their effect on aspects of the inflammatory pain response. In the present study, we investigated the analgesic effect of chronic application of B-complex vitamins (Neurobion) using an inflammatory experimental pain model in rats.

View Article and Find Full Text PDF

There is evidence that high daily intake of aluminum (Al) is associated with an increased risk of dementia or cognitive decline. We injected L-arginine into the dorsal hippocampus (DH) of an AlCl3-induced Alzheimer's model and studied memory deficit, β-amyloid (βA) accumulation, neurodegeneration, and molecular changes. Male Wistar rats were cannulated unilaterally in the DH under a stereotaxic apparatus and a dose of AlCl3 (1-200 μg/rat) was injected into the CA1.

View Article and Find Full Text PDF

Shades of gray in human white matter.

J Comp Neurol

December 2023

Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!