Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Apoptosis, or programmed cell death, is an important regulator of growth, development, defense, and homeostasis in multicellular organisms. A family of cysteine proteases known as caspases is central to many apoptotic pathways, and thus detection of their activity offers an effective means to assess apoptosis. However, currently available methods only allow the evaluation of in vivo caspase activity at a given time point or over a few hours. To assess the activity over extended periods of time, we designed a novel, real-time, in vivo marker that utilizes the N-end rule degradation pathway to allow the detection of caspase activity as reflected by increasing enhanced GFP (EGFP) stability. The marker has an N-terminal arginine in the absence of caspase activity and is rapidly degraded. In vivo caspase activity removes the marker's N-terminal arginine residue, leaving an EGFP with an N-terminal methionine that results in stable fluorescence. In our study, the marker accurately depicted an increase in caspase activity in apoptotic cells and also detected significant endogenous caspase activity in non-apoptotic cells. The downstream effects of this endogenous activity detected in intact, nonapoptotic cells must be regulated by the cell preventing apoptosis. These studies also demonstrate the feasibility of using the N-end rule to study endogenous enzymatic activities other than those associated with proteasomal degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/02336rr02 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!