Live cell imaging: approaches for studying protein dynamics in living cells.

Cell Struct Funct

CREST Research Project of the Japan Science and Technology Corporation, Kansai Advanced Research Center, Kobe, Japan.

Published: October 2002

In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1247/csf.27.333DOI Listing

Publication Analysis

Top Keywords

living cells
12
live cell
8
cell imaging
8
protein dynamics
8
dynamics living
8
imaging technologies
8
imaging
5
imaging approaches
4
approaches studying
4
studying protein
4

Similar Publications

Background: HIV continues to be a public health concern in Mexico and Latin America due to an increase in new infections, despite a decrease being observed globally. Treatment adherence is a pillar for achieving viral suppression. It prevents the spread of the disease at a community level and improves the quality and survival of people living with HIV.

View Article and Find Full Text PDF

Engineering electrogenetic interfaces for mammalian cell control.

Cell Chem Biol

January 2025

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland. Electronic address:

Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells.

View Article and Find Full Text PDF

Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy.

Cell Metab

January 2025

Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:

Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo.

View Article and Find Full Text PDF

Ligand guided in vivo crosslinking and affinity purification mass spectrometry for identifying membrane receptors of Tau.

Talanta

January 2025

State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Misfolded neurotoxic proteins, such as Tau protein, spread within the brain in many neurodegenerative diseases. Receptors play an important role in the recognition of spreading proteins for endocytosis. Blocking the receptors is essential to inhibit neurotoxic proteins spreading in the brain.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!