A preliminary report of phylogenetic diversity of bacterial strains isolated from marine creatures.

J Gen Appl Microbiol

Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Japan.

Published: October 2002

Bacterial diversity among marine creatures, especially molluscs, as a source for searching out novel lineages of bacteria, was studied. Marine creatures were collected at the coasts of the Kanto area in Japan. A total of 116 strains of bacteria were isolated from the intestines of 19 species of marine creatures includings molluscs, pisces and protochordata. Partial sequencing of 16S rDNA revealed that most of the isolates belonged to the gamma subclass of the Proteobacteria and Cytophaga-Flavobacterium-Bacteroides group. The BLAST searches revealed that the complete 16S rDNA sequence of 17 strains out of 116 isolates showed less than 94% similarity with 16S rDNA sequences deposited in the database. Four strains out of the 17 isolates belonged to the Rhodobacter group, 8 strains to the Alteromonas group, and the remaining 5 strains to the Cytophaga-Flavobacterium-Bacteroides group. Phylogenetic positions of 6 strains belonging to the Alteromonas group, which were isolated from different marine creatures, were close to each other, and represented a novel 16S rDNA lineage within the gamma subclass of Proteobacteria. Therefore, it may be inferred that these 6 strains belong to a new genus of Proteobacteria. Phylogenetic positions of the other strains are also independent from neighboring taxa, and they were suggested to respectively form a novel lineage. From these results, it is clear that the biodiversity of bacteria in marine creatures is much wider than was previously thought, and unknown microbiological resources are buried in these organisms.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.48.251DOI Listing

Publication Analysis

Top Keywords

marine creatures
24
16s rdna
16
strains
9
isolated marine
8
isolates belonged
8
gamma subclass
8
subclass proteobacteria
8
cytophaga-flavobacterium-bacteroides group
8
alteromonas group
8
phylogenetic positions
8

Similar Publications

The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed.

View Article and Find Full Text PDF

The Genetic Odyssey of Axolotl Regeneration: Insights and Innovations.

Int J Dev Biol

December 2024

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.

The axolotl, a legendary creature with the potential to regenerate complex body parts, is positioned as a powerful model organism due to its extraordinary regenerative capabilities. Axolotl can undergo successful regeneration of multiple structures, providing us with the opportunity to understand the factors that exhibit altered activity between regenerative and non-regenerative animals. This comprehensive review will explore the mysteries of axolotl regeneration, from the initial cellular triggers to the intricate signaling cascades that guide this complex process.

View Article and Find Full Text PDF

Microplastics (MPs) are tiny plastic pieces having a diameter of less than 5 mm. They can arise from larger plastic debris that degrades over time, synthetic fibres from clothing, microbeads in personal care items and even larger plastic debris. Sea cucumbers are marine creatures vital to the ocean's ecosystem as they assist in maintaining a clean seabed and recycle nutrients.

View Article and Find Full Text PDF
Article Synopsis
  • Nature's evolutionary processes have optimized organisms for their environments, inspiring revolutionary designs in mechanical engineering.
  • This research highlights various bio-inspired innovations from land, water, and air, showcasing their significant impact on mechanical properties.
  • The study concludes that bio-inspired designs can greatly enhance mechanical systems, offering solutions that are more sustainable and efficient, while promoting a better relationship between technology and nature.
View Article and Find Full Text PDF

Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small-sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish-Finder. First, we engendered a structure titled "C2fBF," utilizing the dual-path routing attention protocol of BiFormer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!