Restriction analysis of the ITS region for characterization of the Debaryomyces species.

J Gen Appl Microbiol

Departamento de Genética, Instituto de Biologia, CCS, bloco A, Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, CEP: 21944-970, Brasil.

Published: December 1998

The internal transcribed spacer (ITS) region of rDNA was used for taxonomic inferences in ascomycetous yeasts. The Debaryomyces species had a 640-690 ITS size. The analyzed Candida species can be differentiated by its distinct ITS size. The enzymatic digestion of the ITS region show large homogeneity in Debaryomyces, with polymorphism for only two enzymes. The ITS size and the enzymatic restriction method were used in Brazilian isolates, detecting some Debaryomyces misidentifications in cultures previously identified by conventional methods.

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.44.399DOI Listing

Publication Analysis

Top Keywords

debaryomyces species
8
size enzymatic
8
restriction analysis
4
analysis region
4
region characterization
4
debaryomyces
4
characterization debaryomyces
4
species internal
4
internal transcribed
4
transcribed spacer
4

Similar Publications

Deep learning enabled rapid classification of yeast species in food by imaging of yeast microcolonies.

Food Res Int

February 2025

Department of Food Science & Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA. Electronic address:

Diverse species of yeasts are commonly associated with food and food production environments. The contamination of food products by spoilage yeasts poses significant challenges, leading to quality degradation and food loss. Similarly, the introduction of undesirable strains during fermentation can cause considerable challenges with the quality and progress of the fermentation process.

View Article and Find Full Text PDF

Metagenomic Reveals the Role of Autochthonous in the Fermentation and Flavor Formation of Dry Sausage.

Foods

January 2025

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China.

The effect of SH4, a typical aroma enhancer, on flavor formation of the dry fermented sausage was investigated using gas chromatography-mass spectrometry and metagenomic sequencing. The results showed that inoculation with SH4 promoted volatile compound formation from carbohydrate and amino acid metabolism and accelerated ester synthesis. The enzymes, genes, and microorganisms involved in the formation pathway of volatile compounds based on microbial metabolism were predicted and constructed into a metabolic pathway network.

View Article and Find Full Text PDF

Highlighting antibiotic-free aquaculture by using marine microbes as a sustainable method to suppress Vibrio and enhance the performance of brine shrimp (Artemia franciscana).

Arch Microbiol

January 2025

Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.

Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.

View Article and Find Full Text PDF

The microbial community of a soy sauce is one of the most important factors in determining the sensory characteristics of that soy sauce. In this study, the microbial communities and sensory characteristics of twenty samples of Korean soy sauce () were investigated using shotgun metagenome sequencing and descriptive sensory analysis, and their correlations were explored by partial least square (PLS) regression analysis. The metagenome analysis identified 1332 species of bacteria, yeasts, molds, and viruses across 278 genera, of which , , and accounted for more than 80% of the total community.

View Article and Find Full Text PDF

Microbial communities, both on the surface and within fruit, play a crucial role in reducing postharvest diseases and maintaining fruit quality. This study investigated the effects of co-culture fermentation supernatant of Debaryomyces hansenii (Y) and Bacillus atrophaeus (T) on disease control and quality preservation of postharvest litchi fruit, while exploring the underlying mechanisms through microbiome profiling. The results indicated that Y + T treatment not only reduced decay percentage, weight loss, and pH increase but also preserved the pericarp cell integrity and reduced the lignin accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!