Nebulin is a thin filament protein of the cardiac muscle of the agnathans.

J Muscle Res Cell Motil

Biochemical Cell Biology, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany.

Published: May 2003

Nebulin is an integral protein of skeletal muscle thin filaments and probably acts as a ruler for the thin filament length. Cardiac muscles of higher vertebrates have been shown earlier to lack nebulin. Instead in human and chicken cardiac muscle the much smaller protein nebulette replaces nebulin. Since nebulette is confined to the Z-disc region of the sarcomere and does not span the whole thin filament length, it must have functions significantly different from those assumed for nebulin. We have investigated nebulin in skeletal and cardiac muscles of the agnathans (lamprey, hagfish), elasmobranchs (shark), chondrosts (sturgeon) and teleosts (trout, eel) by SDS-PAGE and immunodetection methods. Among these, lamprey and hagfish cardiac muscles are unique in that both contain full-length nebulin identical in molecular mass to the nebulin of the respective body muscle. Using immunofluorescence microscopy, lamprey cardiac nebulin was localised in the I-band of the sarcomere, the same as for nebulin in skeletal muscle. In contrast to this, all gnathostome species investigated lacked nebulin in cardiac muscles, while it was present in the respective skeletal muscles. This clearly shows that nebulin is not exclusively present in skeletal muscles of chordates. The findings also demonstrate a rare case of dramatic size reduction of a protein during evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020909902462DOI Listing

Publication Analysis

Top Keywords

cardiac muscles
16
nebulin
12
thin filament
12
cardiac muscle
8
skeletal muscle
8
filament length
8
nebulin skeletal
8
lamprey hagfish
8
skeletal muscles
8
cardiac
7

Similar Publications

Background: Cardiomyopathy is a disease that affects the myocardium and can be classified as dilated, restrictive, or hypertrophic cardiomyopathy. Among the subtypes, restrictive cardiomyopathy is characterized by restriction of ventricular filling and its uncommon cause is a disease due to mutation on Filamin C (FLNC) gene. Filamin C is an actin-binding protein encoded by FLNC gene and participates in sarcomere stability maintenance, which is expressed on the striated muscle.

View Article and Find Full Text PDF

Comprehensive analysis of scRNA-seq and bulk RNA-seq reveals the non-cardiomyocytes heterogeneity and novel cell populations in dilated cardiomyopathy.

J Transl Med

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.

Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.

Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.

View Article and Find Full Text PDF

To analyze the morphologic changes and the extent of severity in end-stage heart disease; and to explore the correlation with their clinical features. Twelve cases of recipients who underwent pediatric cardiac allograft transplantation were collected from May 2022 to November 2023 at the Seventh Medical Center of People's Liberation Army of China General Hospital. Gross pathologic examinations were performed and morphological changes were observed under a light microscope after HE, Masson's trichrome, and reticulin staining.

View Article and Find Full Text PDF

Inflammation and a metabolic shift from oxidative metabolism to glycolysis are common in the ischemic heart, the latter partly controlled by pyruvate kinase (muscle, PKM). We previously identified alternative splicing promoting the PKM2 isoform after myocardial infarction (MI). We examined the role of PKM2 physiological upregulation after MI, modeled by ligation of the left anterior descending coronary artery, using global PKM2 knockout (PKM2) mice.

View Article and Find Full Text PDF

Insights into the progressive impact of high-fat-diet induced insulin resistance on skeletal muscle and myocardium: A comprehensive study on C57BL6 mice.

PLoS One

January 2025

Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.

This study aims to provide a theoretical foundation for the future management of diabetes at various stages induced by a high-fat diet. Specifically, it seeks to determine the appropriate pharmacological interventions for each phase of diabetes development and the targeted therapeutic directions at different stages of diabetes progression. This investigation employed C57BL6 mice as experimental subjects, successfully establishing an insulin resistance model through a 12-week high-fat diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!