The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to obtain new results overriding the dogma that neurogenesis is impossible in the adult brain. The present review summarizes the information about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and denate gyrus, neurogenesis appears proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin, and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise very fast to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!