Introduction: Nonadrenergic, noncholinergic neurons have been proposed to synchronize pulsatile insulin release from the islets in the pancreas by triggering transient increases of the cytoplasmic Ca2+ concentration ([Ca2+]i) in beta-cells via an inositol trisphoshate-dependent mechanism.

Aims: To test whether pancreatic beta-cells respond to stretch activation with similar types of transients and whether these Ca signals propagate to other beta-cells in the presence and absence of cell contacts.

Methodology: Single cells and small aggregates were prepared from beta-cell-rich islets from mice. After 2-5 days of culture, [Ca2+]i was measured with digital imaging and the indicator fura-2 during superfusion with a medium containing 20 mmol/L glucose and 50 micromol/L methoxyverapamil. Membrane stretch was induced by osmotic swelling or focal touch stimulation.

Results: Lowering the medium osmolarity with 100-102 mOSM/L by removal of sucrose or by dilution resulted in a 2-3-fold increase in the number of transients during an initial 5-minute period. Sucrose omission was stimulatory also after isosmolar replacement with readily penetrating urea. The intracellular Ca2+-ATPase inhibitor thapsigargin suppressed both the spontaneously occurring transients and those initiated by volume expansion. Touch stimuli induced [Ca2+]i transients, which rapidly propagated to cells within the same aggregate or lacking contact.

Conclusion: The observations support the idea that beta-cells both receive and regenerate extracellular signals triggering [Ca2+]i transients. Touch stimulation is a useful tool for investigating the propagation of [Ca2+]i signals between pancreatic beta-cells lacking physical contact.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006676-200301000-00014DOI Listing

Publication Analysis

Top Keywords

stretch activation
8
pancreatic beta-cells
8
[ca2+]i transients
8
transients
6
[ca2+]i
5
beta-cells
5
activation ca2+
4
ca2+ transients
4
transients pancreatic
4
pancreatic beta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!