Transient osmotic stress facilitates mutant huntingtin aggregation.

Neuroreport

Department of Psychiatry and Behavioral Neurobiology, 1720 7th Avenue South, SC1061, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.

Published: December 2002

Human neuroblastoma SH-SY5Y cell lines stably expressing mutant truncated huntingtin with 82 (mutant) glutamine repeats (N63-82Q) were briefly exposed to hyperosmotic conditions which decrease cell volume and therefore transiently increased the concentration of N63-82Q, as well as activating specific stress-induced pathways. Transient hyperosmotic treatment significantly increased the number of cells with aggregates. When the N63-82Q cells were subsequently returned to iso-osmotic medium after the treatment, the number of cells with aggregates remained constant up to 12 h. However, between 12 and 24 h another significant increase in aggregate frequency was observed, with approximately 55% of the cells containing aggregates after 24 h. This may be due in part to the formation of microaggregates during hyperosmotic conditions that act as seeds for the aggregate formation. Further, treatment of cells with geldanamycin, which activates a heat shock response, significantly attenuated the hyperosmotic-induced increase in aggregate formation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200212200-00032DOI Listing

Publication Analysis

Top Keywords

cells aggregates
12
hyperosmotic conditions
8
number cells
8
increase aggregate
8
aggregate formation
8
cells
5
transient osmotic
4
osmotic stress
4
stress facilitates
4
facilitates mutant
4

Similar Publications

The aggregation and accumulation of amyloid β 42 (Aβ42) peptides on the surface of brain cells is associated with Alzheimer's disease (AD); however, the underlying molecular mechanisms remain unclear. Herein, we used a unique brain-mimetic open system that continuously flows Aβ42 solution to analyze the initial aggregation and adsorptive nature of Aβ42 at physiological concentrations on the lipid membrane. The open system accelerated the adsorption and dimerization kinetics.

View Article and Find Full Text PDF

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Extracellular thiol isomerase ERp5 regulates integrin αIIbβ3 activation by inhibition of fibrinogen binding.

Platelets

December 2025

Cyrus Tang Medical Institute, The Fourth Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.

Recent studies have shown that anti-ERp5 antibodies inhibit platelet activation and thrombus formation; Moreover, ERp5-deficient platelets exhibit enhanced platelet reactivity via regulation of endoplasmic reticulum (ER) stress. In this study, we used a new ERp5-knockout mouse model as well as recombinant ERp5 (rERp5) protein, to examine the role of ERp5 in platelet function and thrombosis. Although platelet-specific ERp5-deficient mice had decreased platelet count, the mice had shortened tail-bleeding times and enhanced platelet accumulation in FeCl-induced mesenteric artery injury, compared with wild-type mice.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) is a simple and low-cost intervention that is thought to increase collateral blood flow through the vasodilatory effects of nitric oxide (NO) produced by the endothelium and red blood cells (RBCs). This study aims to investigate whether RIC affects RBC deformability and levels of NO and nitrite in patients with ischemic stroke.

Methods: This is a predefined substudy to the RESIST (Remote Ischemic Conditioning in Patients With Acute Stroke Trial) randomized clinical trial conducted in Denmark.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!