Clinical isolate Acinetobacter baumannii CLA-1 was resistant to a series of antibiotic molecules, including carbapenems. Cloning and expression of the beta-lactamase gene content of this isolate in Escherichia coli DH10B identified a chromosome-encoded oxacillinase, OXA-40, that differed by one or two amino acid changes from OXA-24, -25, and -26 and an AmpC-type cephalosporinase. The OXA-40 beta-lactamase had a mainly narrow-spectrum hydrolytic profile, but it included ceftazidime and imipenem. Its activity was resistant to inhibition by clavulanic acid, tazobactam, sulbactam, and, like most of the other carbapenem-hydrolyzing oxacillinases, NaCl. OXA-40 had an FGN triad replacing a YGN motif at class D beta-lactamase (DBL) positions 144 to 146. Site-directed DNA mutagenesis leading to a Phe-to-Tyr change at DBL position 144 in OXA-40 gave a mutant enzyme with increased hydrolytic activity against most beta-lactams, including imipenem. Conversely, with a gene encoding the narrow-spectrum oxacillinase OXA-1 as the template, a nucleotide substitution leading to a Tyr-to-Phe change in the YGN motif of OXA-1 gave a mutant enzyme with decreased hydrolytic activity without an increase in carbapenem-hydrolyzing activity. Thus, the Phe residue in the FGN motif was not associated with carbapenem-hydrolyzing activity by itself but instead was associated with weak overall hydrolytic activity. Finally, this Phe residue in OXA-40 explained resistance to inhibition by NaCl whereas a Tyr residue in motif YGN was related to susceptibility to NaCl.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149012 | PMC |
http://dx.doi.org/10.1128/AAC.47.1.268-273.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!