A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inter- and intramolecular potential for the N-formylglycinamide-water system. A comparison between theoretical modeling and empirical force fields. | LitMetric

An intramolecular NEMO potential is presented for the N-formylglycinamide molecule together with an intermolecular potential for the N-formylglycinamide-water system. The intramolecular N-formylglycinamide potential can be used as a building block for the backbone of polypeptides and proteins. Two intramolecular minima have been obtained. One, denoted as C5, is stabilized by a hydrogen bonded five member ring, and the other, denoted as C7, corresponds to a seven membered ring. The interaction between one water molecule and the N-formylglycinamide system is also studied and compared with Hartree-Fock SCF calculations and with the results obtained for some of the more commonly used force fields. The agreement between the NEMO and SCF energies for the complexes is in general superior to that of the other force fields. In the C7 region the surfaces obtained from the intramolecular part of the commonly used force fields are too flat compared to the NEMO potential and the ab initio calculations. We further analyze the possibility of using a charge distribution obtained from one conformation to describe the charge distribution of other conformations. We have found that the use of polarizabilities and generic dipoles can model most of the changes in charge density due to the different geometry of the new conformations, but that one can expect additional errors in the interaction energies that are of the order of 1 kcal/mol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.10159DOI Listing

Publication Analysis

Top Keywords

force fields
16
potential n-formylglycinamide-water
8
n-formylglycinamide-water system
8
nemo potential
8
commonly force
8
charge distribution
8
potential
5
inter- intramolecular
4
intramolecular potential
4
system comparison
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!