DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells.

Nat Genet

Department of Molecular Biology, MethylGene, 7220 Frederick-Banting, Montreal, Canada H4S 2A1.

Published: January 2003

Transcriptional silencing by CpG island methylation is a prevalent mechanism of tumor-suppressor gene suppression in cancers. Genetic experiments have defined the importance of the DNA methyltransferase Dnmt1 for the maintenance of methylation in mouse cells and its role in neoplasia. In human bladder cancer cells, selective depletion of DNMT1 with antisense inhibitors has been shown to induce demethylation and reactivation of the silenced tumor-suppressor gene CDKN2A. In contrast, targeted disruption of DNMT1 alleles in HCT116 human colon cancer cells produced clones that retained CpG island methylation and associated tumor-suppressor gene silencing, whereas HCT116 clones with inactivation of both DNMT1 and DNMT3B showed much lower levels of DNA methylation, suggesting that the two enzymes are highly cooperative. We used a combination of genetic (antisense and siRNA) and pharmacologic (5-aza-2'-deoxycytidine) inhibitors of DNA methyl transferases to study the contribution of the DNMT isotypes to cancer-cell methylation. Selective depletion of DNMT1 using either antisense or siRNA resulted in lower cellular maintenance methyltransferase activity, global and gene-specific demethylation and re-expression of tumor-suppressor genes in human cancer cells. Specific depletion of DNMT1 but not DNMT3A or DNMT3B markedly potentiated the ability of 5-aza-2'-deoxycytidine to reactivate silenced tumor-suppressor genes, indicating that inhibition of DNMT1 function is the principal means by which 5-aza-2'-deoxycytidine reactivates genes. These results indicate that DNMT1 is necessary and sufficient to maintain global methylation and aberrant CpG island methylation in human cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng1068DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
human cancer
12
cpg island
12
island methylation
12
tumor-suppressor gene
12
depletion dnmt1
12
dnmt1
9
methylation
8
methylation aberrant
8
gene silencing
8

Similar Publications

Ligand binding to EGFR activates Rho family GTPases, triggering actin cytoskeleton reorganization, cell migration and invasion. Activated EGFR is also rapidly endocytosed but the role of EGFR endocytosis in cell motility is poorly understood. Hence, we used live-cell microscopy imaging to demonstrate that endogenous fluorescently labeled VAV2, a guanine nucleotide exchange factor for Rho GTPases, is co-endocytosed with EGFR in genome-edited human oral squamous cell carcinoma (HSC3) cells, an in vitro model for head-and-neck cancer where VAV2 is known to promote metastasis and associates with poor prognosis.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Fluorination of Aza-BODIPY for Cancer Cell Plasma Membrane-Targeted Imaging and Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.

Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.

View Article and Find Full Text PDF

B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications.

Theranostics

January 2025

Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China.

Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored.

View Article and Find Full Text PDF

Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!