Heterologous expression of Toll-like receptor (TLR)2 and CD14 in Chinese hamster ovary fibroblasts was reported to confer responsiveness to pneumococcal peptidoglycan. The present study characterized the role of TLR2 in the host immune response and clinical course of pneumococcal meningitis. Pneumococcal infection of mice caused a significant increase in brain TLR2 mRNA expression at both 4 and 24 h postchallenge. Mice with a targeted disruption of the TLR2 gene (TLR2-/-) showed a moderate increase in disease severity, as evidenced by an aggravation of meningitis-induced intracranial complications, a more pronounced reduction in body weight and temperature, and a deterioration of motor impairment. These symptoms were associated with significantly higher cerebellar and blood bacterial titers. Brain expression of the complement inhibitor complement receptor-related protein y was significantly higher in infected TLR2-/- than in wild-type mice, while the expression of the meningitis-relevant inflammatory mediators IL-1beta, TNF-alpha, IL-6, macrophage-inflammatory protein (MIP)-2, inducible NO synthase, and C3 was similar in both genotypes. We first ectopically expressed single candidate receptors in HEK293 cells and then applied peritoneal macrophages from mice lacking TLR2 and/or functional TLR4 for further analysis. Overexpression of TLR2 and TLR4/MD-2 conferred activation of NF-kappaB in response to pneumococcal exposure. However, pneumococci-induced TNF-alpha release from peritoneal macrophages of wild-type and TLR2/functional TLR4/double-deficient mice did not differ. Thus, while TLR2 plays a significant role in vivo, yet undefined pattern recognition receptors contribute to the recognition of and initiation of the host immune defense toward Streptococcus pneumoniae infection.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.1.438DOI Listing

Publication Analysis

Top Keywords

toll-like receptor
8
immune response
8
pneumococcal meningitis
8
host immune
8
peritoneal macrophages
8
tlr2
7
pneumococcal
5
mice
5
receptor participates
4
participates mediation
4

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

Bacterial flagellin, a potent intestinal innate immune activator, prevents murine rotavirus (RV) infection independent of adaptive immunity and interferons. The flagellin-induced immunity is mediated by Toll-like receptor (TLR5) and Nod-like receptor C4 (NLRC4), which elicit the production of interleukins 22 (IL-22) and IL-18, respectively. Here, we assessed whether a high abundance of flagellin at the time of vaccination would negatively affect the oral RV vaccine take.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.

Sci China Life Sci

January 2025

State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.

View Article and Find Full Text PDF

IRAK4: potential therapeutic target for airway disease exacerbations.

Trends Pharmacol Sci

January 2025

Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey, 89 French Street, Suite 4210, New Brunswick, NJ 08901, USA. Electronic address:

Inflammatory lung diseases represent a significant healthcare burden. There is an unmet need for identifying therapeutic targets for inflammatory lung diseases, such as asthma, and chronic obstructive pulmonary disease (COPD). In a recent study, Sayers et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!