We previously demonstrated that a specialized subset of immature myeloid cells migrate to lymphoid organs as a result of tumor growth or immune stress, where they suppress B and T cell responses to Ags. Although NO was required for suppression of mitogen activation of T cells by myeloid suppressor cells (MSC), it was not required for suppression of allogenic responses. In this study, we describe a novel mechanism used by MSC to block T cell proliferation and CTL generation in response to alloantigen, which is mediated by the enzyme arginase 1 (Arg1). We show that Arg1 increases superoxide production in myeloid cells through a pathway that likely utilizes the reductase domain of inducible NO synthase (iNOS), and that superoxide is required for Arg1-dependent suppression of T cell function. Arg1 is induced by IL-4 in freshly isolated MSC or cloned MSC lines, and is therefore up-regulated by activated Th2, but not Th1, cells. In contrast, iNOS is induced by IFN-gamma and Th1 cells. Because Arg1 and iNOS share L-arginine as a common substrate, our results indicate that L-arginine metabolism in myeloid cells is a potential target for selective intervention in reversing myeloid-induced dysfunction in tumor-bearing hosts.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.1.270DOI Listing

Publication Analysis

Top Keywords

myeloid cells
12
cells
8
required suppression
8
th1 cells
8
il-4-induced arginase
4
arginase suppresses
4
suppresses alloreactive
4
alloreactive cells
4
cells tumor-bearing
4
tumor-bearing mice
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Neutrophil-to-lymphocyte ratio and short-term mortality in patients having anti-MDA5-positive dermatomyositis with interstitial lung disease: a retrospective study.

BMC Pulm Med

January 2025

Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.

Background: In this study, we aimed to explore the association between baseline and early changes in the neutrophil-to-lymphocyte ratio (NLR) and the 30-day mortality rate in patients having anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis with interstitial lung disease (DM-ILD).

Methods: Overall, 263 patients with anti-MDA5 DM-ILD from four centers in China were analyzed. Multivariate logistic regression analysis was used to evaluate the impact of baseline NLR on the 30-day mortality rate in patients with anti-MDA5-positive DM-ILD.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!