In the presence of the I-Ealpha protein, transgenic (Tg) mice expressing the 1H3.1 alphabeta TCR that is specific for the Ealpha52-68:I-A(b) complex display drastic intrathymic deletion. Although peripheral T cells from these mice remained unresponsive to the Ealpha52-68:I-A(b) complex, they contained a subpopulation able to specifically react to this complex in the presence of exogenous IL-2, indicating that some 1H3.1 alphabeta TCR Tg T cells have escaped clonal deletion and efficiently populated the periphery. IL-2-dependent, Ealpha52-68:I-A(b) complex-responsive T cells were CD4-CD8- and expressed the 1H3.1 alphabeta TCR. Such T cells could develop intrathymically, did not show sign of regulatory/suppressor activity, displayed a typical naive phenotype, and seemed to persist in vivo over time. CD4-CD8- TCR Tg T cells were also detected when the surface density of the deleting ligand was increased on MHC class II+ cells. In addition, the development of CD4-CD8- 1H3.1 alphabeta TCR Tg T cells could be supported by I-A(b) molecules. These observations indicate that CD4 surface expression neither specifies, nor is required for, the thymic export of mature thymocytes expressing a MHC class II-restricted alphabeta TCR. The data also show that, although the avidity of the interaction involved in intrathymic deletion is significantly lower than that involved in mature T cell activation, its range can be large enough to be influenced by the presence or absence of coreceptors. Finally, the margin created by the absence of CD4 coreceptor was substantial because it could accommodate various amounts of the deleting ligand on thymic stromal cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.1.201DOI Listing

Publication Analysis

Top Keywords

alphabeta tcr
20
1h31 alphabeta
16
tcr cells
16
mhc class
12
cells
9
class ii-restricted
8
ealpha52-68i-ab complex
8
intrathymic deletion
8
deleting ligand
8
tcr
6

Similar Publications

Human γδ T cells in the tumor microenvironment: Key insights for advancing cancer immunotherapy.

Mol Cells

January 2025

Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea. Electronic address:

The role of γδ T cells in antitumor responses has gained significant attention due to their unique major histocompatibility complex (MHC)-independent killing mechanisms, which distinguish them from conventional αβ T cells. Notably, γδ tumor-infiltrating lymphocytes (TILs) have been identified as favorable prognostic markers in various cancers. However, γδ TIL subsets, including Vδ1, Vδ2, and Vδ3, exhibit distinct prognostic implications and phenotypes from one another within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Structural characterization of two γδ TCR/CD3 complexes.

Nat Commun

January 2025

Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.

The T-cell receptor (TCR)/CD3 complex plays an essential role in the immune response and is a key player in cancer immunotherapies. There are two classes of TCR/CD3 complexes, defined by their TCR chain usage (αβ or γδ). Recently reported structures have revealed the organization of the αβ TCR/CD3 complex, but similar studies regarding the γδ TCR/CD3 complex have lagged behind.

View Article and Find Full Text PDF

The CD8 co-receptor exists as both an αα homodimer, expressed on subsets of specialized lymphoid cells, and as an αβ heterodimer, which is the canonical co-receptor on cytotoxic T-cells, tuning TCR thymic selection and antigen-reactivity in the periphery. However, the biophysical parameters governing human CD8αβ interactions with classical MHC class I (MHCI) and unconventional MHC-like molecules have not been determined. Using hetero-dimerized Fc-fusions to generate soluble human CD8αβ, we demonstrate similar weak binding affinity to multiple different MHCI alleles compared with CD8αα.

View Article and Find Full Text PDF

During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets.

View Article and Find Full Text PDF
Article Synopsis
  • γδ T-cells play a crucial role in immune surveillance following HLA-Haploidentical Stem Cell Transplantation (haplo-HSCT), especially in pediatric patients.
  • A study showed that a specific subset of Vδ2 T-cells is associated with better antiviral protection, as these cells were more prevalent in patients who did not experience viral reactivation.
  • The research highlights how Vδ2 T-cells can inhibit CMV replication and enhance the immune response, suggesting their potential use in immunotherapy post-transplantation to combat both infections and tumors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!