The phase-dependent plasticity of carotid chemoafferent signaling was studied with electrical stimulation of a carotid sinus nerve during either inspiration or expiration in anesthetized, glomectomized, vagotomized, paralyzed, and ventilated rats. Stroboscopic and interferometric analyses of the resulting phase-contrast disturbances of the respiratory rhythm revealed that carotid chemoafferent traffic was dynamically filtered centrally by a parallel bank of leaky integrators and differentiators, each being logically gated to the inspiratory or expiratory phase in a stop-and-go manner as follows: 1) carotid short-term potentiation of inspiratory drive was mediated by dual integrators that both shortened inspiration and augmented phrenic motor output cooperatively in long and short timescales; 2) carotid short-term depression of respiratory frequency was mediated by a (possibly pontine) integrator that lengthened expiration with a relatively long memory; and 3) carotid "chemoreflex" shortening of expiration was mediated by an occult fast integrator, which, together with carotid short-term depression, formed a differentiator. These effects were modulated anteriorly by integrators in the nucleus tractus solitarius that were "auto-gated" to, or recruited by, the carotid sinus nerve input. Such phase-selective and activity-dependent time-frequency filtering of carotid chemoafferent feedback in parallel neurological-neurodynamic central pathways may profoundly affect respiratory stability during hypoxia and sleep and could contribute to the dynamic optimization of the respiratory pattern and maintenance of homeostasis in health and in disease states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00639.2002 | DOI Listing |
Front Pharmacol
October 2023
Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.
We have provided indirect pharmacological evidence that hypoxia may trigger release of the S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), from primary carotid body glomus cells (PGCs) of rats that then activates chemosensory afferents of the carotid sinus nerve to elicit the hypoxic ventilatory response (HVR). The objective of this study was to provide direct evidence, using our capacitive S-nitrosothiol sensor, that L-CSNO is stored and released from PGCs extracted from male Sprague Dawley rat carotid bodies, and thus further pharmacological evidence for the role of S-nitrosothiols in mediating the HVR. Key findings of this study were that 1) lysates of PGCs contained an S-nitrosothiol with physico-chemical properties similar to L-CSNO rather than S-nitroso-L-glutathione (L-GSNO), 2) exposure of PGCs to a hypoxic challenge caused a significant increase in S-nitrosothiol concentrations in the perfusate to levels approaching 100 fM via mechanisms that required extracellular Ca, 3) the dose-dependent increases in minute ventilation elicited by arterial injections of L-CSNO and L-GSNO were likely due to activation of small diameter unmyelinated C-fiber carotid body chemoafferents, 4) L-CSNO, but not L-GSNO, responses were markedly reduced in rats receiving continuous infusion (10 μmol/kg/min, IV) of both S-methyl-L-cysteine (L-SMC) and S-ethyl-L-cysteine (L-SEC), 5) ventilatory responses to hypoxic gas challenge (10% O, 90% N) were also due to the activation of small diameter unmyelinated C-fiber carotid body chemoafferents, and 6) the HVR was markedly diminished in rats receiving L-SMC plus L-SEC.
View Article and Find Full Text PDFJ Appl Physiol (1985)
August 2021
Department of Pediatrics, Case Western University, Cleveland, Ohio.
Arterial pCO elevations increase minute ventilation via activation of chemosensors within the carotid body (CB) and brainstem. Although the roles of CB chemoafferents in the hypercapnic (HC) ventilatory response have been investigated, there are no studies reporting the role of these chemoafferents in the ventilatory responses to a HC challenge or the responses that occur upon return to room air, in freely moving mice. This study found that an HC challenge (5% CO, 21% O, 74% N for 15 min) elicited an array of responses, including increases in frequency of breathing (accompanied by decreases in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives in sham-operated (SHAM) adult male C57BL6 mice, and that return to room air elicited a brief excitatory phase followed by gradual recovery of all parameters toward baseline values over a 15-min period.
View Article and Find Full Text PDFAntioxidants (Basel)
May 2021
Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)-A specialised peripheral chemoreceptor. Central to CB O-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat.
View Article and Find Full Text PDFFront Physiol
December 2020
Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.
In juvenile rats, the carotid body (CB) is the primary sensor of oxygen (O) and a secondary sensor of carbon dioxide (CO) in the blood. The CB communicates to the respiratory pattern generator via the carotid sinus nerve, which terminates within the commissural nucleus tractus solitarius (cNTS). While this is not the only peripheral chemosensory pathway in juvenile rodents, we hypothesize that it has a unique role in determining the interaction between O and CO, and consequently, the response to hypoxic-hypercapnic gas challenges.
View Article and Find Full Text PDFPflugers Arch
January 2021
Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!