In situ analysis of spatial relationships between proteins of the nuclear pore complex.

Biophys J

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and the Dana-Farber Cancer Institute, 1 Jimmy Fund Way, Boston, MA 02115, USA.

Published: December 2002

Macromolecular transport between the nucleus and cytoplasm occurs through the nuclear pore complexes (NPCs). The NPC in the budding yeast Saccharomyces cerevisiae is a 60-MDa structure embedded in the nuclear envelope and composed of ~30 proteins, termed nucleoporins or nups. Here we present a large-scale analysis of spatial relationships between nucleoporins using fluorescence resonance energy transfer (FRET) in living yeast cells. Energy transfer was measured in a panel of strains, each of which coexpresses the enhanced cyan and yellow fluorescent proteins as fusions to distinct nucleoporins. With this approach, we have determined 13 nucleoporin pairs yielding FRET signals. Independent experiments are consistent with the FRET results: Nup120 localization is perturbed in the nic96-1 mutant, as is Nup82 localization in the nup116Delta mutant. To better understand the spatial relationship represented by an in vivo FRET signal, we have investigated the requirements of these signals. We demonstrate that in one case FRET signal is lost upon insertion of a short spacer between the nucleoporin and its enhanced yellow fluorescent protein label. We also show that the Nup120 FRET signals depend on whether the fluorescent moiety is fused to the N- or C-terminus of Nup120. Combined with existing data on NPC structure, the FRET pairs identified in this study allow us to propose a refined molecular model of the NPC. We suggest that the approach may serve as a prototype for the in situ study of other large macromolecular complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302438PMC
http://dx.doi.org/10.1016/S0006-3495(02)75363-0DOI Listing

Publication Analysis

Top Keywords

analysis spatial
8
spatial relationships
8
nuclear pore
8
energy transfer
8
yellow fluorescent
8
fret signals
8
fret signal
8
fret
7
situ analysis
4
relationships proteins
4

Similar Publications

Objective: We aimed to assess the coverage of a Human Papillomavirus (HPV) screening program for each of the 32 federal states of Mexico, as well as the spatial patterns for HPV infections from 2013 to 2019.

Methods: We conducted an exploratory, ecological study on data from a national health program in Mexico during 2013-2019. Adjusted rates per 100,000 females aged 25-64 years were estimated and georeferenced at the national and state level to assess the coverage of the screening program and positive detections of HPV infections.

View Article and Find Full Text PDF

Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.

View Article and Find Full Text PDF

Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing .

Nano Lett

January 2025

Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.

Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.

View Article and Find Full Text PDF

We present a new hierarchical Bayesian method using multilocus genotypes to estimate recent seed and pollen migration rates in a spatially explicit framework that incorporates distance effects separately for each type of dispersal. The method additionally estimates population allelic frequencies, population divergence values, individual inbreeding coefficients, individual maternal and paternal ancestries, and allelic dropout rates. We conduct a numerical simulation analysis that indicates that the method can provide reliable estimates of seed and pollen migration rates and allow accurate inference of spatial effects on migration, at affordable sample sizes (25-50 individuals/population) when population genetic divergence is not low (FST≥0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!