Information concerning continuous or discreet phase flow in multiphase systems is desired for various practical and analytical applications. The potential of X-ray-based flow visualization and measurement of multiphase flow is demonstrated here by two non-intrusive methods: (1) Measurement of the three-dimensional (3D) velocity field of the continuous liquid phase in a bubble column by X-ray-based particle tracking velocimetry (PTV) of seeded particles. (2) Liquid flow visualization in a bubble column by injecting an X-ray absorbing liquid into the bubble column. X-rays have the advantage that they are not affected by the various refraction indices of the multiphase system and penetrate the multiphase flow in undistorted straight lines. Hence, in contrast to optical methods, both of these X-ray-based methods are independent of the void fraction and are applicable to opaque liquids.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04580.xDOI Listing

Publication Analysis

Top Keywords

flow visualization
12
bubble column
12
x-ray-based flow
8
visualization measurement
8
multiphase flow
8
multiphase
5
flow
5
x-ray-based
4
measurement application
4
application multiphase
4

Similar Publications

Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.

View Article and Find Full Text PDF

Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET.

Methods Cell Biol

January 2025

Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg.

During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential.

View Article and Find Full Text PDF

Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales.

View Article and Find Full Text PDF

4D flow cardiac magnetic resonance in pediatric congenital heart disease: Insights from over four years of clinical practice.

Clin Imaging

January 2025

Institute of Clinical sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept of Pediatric Radiology, The Queen Silvia Children's Hospital, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Background: Congenital heart diseases (CHDs) are common birth defects. This work presents over four years of clinical experience of 4D flow cardiovascular magnetic resonance (CMR), highlighting its value for pediatric CHD.

Methods: Children with various CHD diagnoses (n = 298) were examined on a 1.

View Article and Find Full Text PDF

A digital-movie-based flow colorimetry for pH measurement using a universal indicator has been applied to the end point detection of acid-base titrations. A two-channel flow system of feedback-based flow ratiometry, primarily consisting of two peristaltic pumps, a digital microscope-based detector, and a laptop computer, was constructed; a Visual Basic.NET program written in-house was used for automating the analytical processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!