The aim of this study was to obtain better characterization of the interaction between a water mist and a diffusion flame of small-scale size. A PIV algorithm was used to determine the flow pattern with and without a water mist and its relation to the velocity of water droplets.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04577.xDOI Listing

Publication Analysis

Top Keywords

water mist
12
interaction water
8
velocity measurements
4
measurements particle
4
particle image
4
image velocimetry
4
velocimetry direct
4
direct intercorrelation
4
intercorrelation algorithm
4
algorithm application
4

Similar Publications

A liquid crystal elastomer (LCE) actuator capable of colorimetric humidity sensing is realized. The designed LCE features acid protonated amino azobenzene side groups in its structure, which endow the actuator with the hygroscopicity and act as the humidity reporter via color changes. Given that the protonated and deprotonated chromophore absorb visible light at different wavelengths, when the protonated LCE is under higher humidity, it absorbs more water that deprotonates azobenzene and leads to a change in color.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

Our study addresses the pressing global freshwater scarcity crisis by engineering advanced liquid-entrapped nanosurfaces optimized for highly efficient atmospheric water harvesting (AWH). Through a synergistic approach integrating carbon fiber paper (CFP), hydrothermally synthesized nanoneedles (NNs), and silicone oil liquid entrapment (LE) within NNs, we achieved remarkable improvements in water collection efficiency. While CFP captures fog effectively during AWH, it faces challenges with water-pinning effects, mitigated by NNs' improved droplet-spreading properties, leading to a notable 50% increase in harvesting efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding tree growth in tropical forests is vital for carbon sequestration and assessing the impact of deforestation in these regions.
  • A study in Mount Cameroon examined how climatic factors, like rainfall and temperature, affect the growth of 28 tree species across different elevations and seasonal conditions from 2015 to 2018.
  • Findings indicated that tree growth was limited by both too little and too much water, with growth rates influenced by soil moisture levels and nighttime temperatures, highlighting the complexity of forest responses to climate variability.
View Article and Find Full Text PDF

Experimental Study on Suppression of Lithium Iron Phosphate Battery Fires.

Min Metall Explor

February 2024

Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health (NIOSH), 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.

Lithium-ion battery applications are increasing for battery-powered vehicles because of their high energy density and expected long cycle life. With the development of battery-powered vehicles, fire and explosion hazards associated with lithium-ion batteries are a safety issue that needs to be addressed. Lithium-ion batteries can go through a thermal runaway under different abuse conditions including thermal abuse, mechanical abuse, and electrical abuse, leading to a fire or explosion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!