Non-aqueous phase liquids enter the vadose zone as a result of spills or leaking underground storage facilities, thus contaminating groundwater resources. Measuring the contaminant concentrations is important in assessing the risk to human health and the environment and to develop effective remediation. This research presents the development and application of the light transmission method (LTM) for three-phase flow systems, aimed at investigating unstable fingered flow in a soil-air-oil-water system. The LTM uses the hue and intensity of light transmitted through a slab chamber to measure fluid content, since total liquid content is a function of both hue and light intensity. Evaluation of the LTM is obtained by comparing experiments with LTM and synchrotron X-rays. The LTM captures the spatial resolution of the fluid contents and can provide new insights into rapidly changing, two-phase and three-phase flow systems. Application of the LTM as a visualization technique for environmental and physical phenomena is noted. Visualization by LTM of groundwater remediation by surfactants as well as visualization of model cluster growth and fractal dimensions was also explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04559.x | DOI Listing |
Nanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Division of Immunology and Microbiology, Iv. Javakhishvili Tbilisi State University, 1, Ilia Tchavchavadze Ave., 0179 Tbilisi, Georgia.
The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
To face the increasing requirement for grains as the global population continues to grow, improving both crop yield and quality has become essential. Plant health directly impacts crop quality and yield, making the development of plant health-monitoring technologies essential. Variable sensing technologies for outdoor/indoor farming based on different working principles have emerged as important tools for monitoring plants and their microclimates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!