The production of asparagine (N)-linked oligosaccharides is of vital importance in the formation of glycosylated proteins in eukaryotes and is mediated by the dolichol pathway. As part of studies to allow manipulation of this pathway, the gene coding for the production of the enzyme UDP N-acetylglucosamine: dolichol phosphate N-acetylglucosaminylphosphoryl transferase (GPT), catalysing the first step in the assembly of dolichol-linked oligosaccharides, was cloned from the filamentous fungus Aspergillus niger. Degenerate-PCR was used to amplify a 470-bp fragment of the gene, which was labelled as a probe to obtain a full-length clone from a genomic library of A. niger. This contained a 1557-bp open reading frame encoding a highly hydrophobic protein of 468 amino acids with a predicted molecular weight of 51.4 kDa. The gene contained two intron sequences and putative dolichol recognition sites (PDRSs) were present in the deduced amino acid sequence. Comparison with other eukaryotic GPTs revealed the A. niger GPT to share 45-47% identity with yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and 41-42% identity with mammals (mouse, hamster, human). Nested-PCR of a cDNA library was used to confirm the position of an intron. A complete cDNA clone of A. niger gpt was obtained by employing a recombinant PCR approach. This was used to rescue a conditional lethal mutant of S. cerevisiae carrying a dysfunctional gpt gene by heterologous expression, confirming that the gpt genes from A. niger and S. cerevisiae are functionally equivalent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-4165(02)00445-2DOI Listing

Publication Analysis

Top Keywords

udp n-acetylglucosamine
8
n-acetylglucosamine dolichol
8
dolichol phosphate
8
phosphate n-acetylglucosaminylphosphoryl
8
n-acetylglucosaminylphosphoryl transferase
8
filamentous fungus
8
fungus aspergillus
8
aspergillus niger
8
niger gpt
8
niger
6

Similar Publications

Multi-dimensional bio mass cytometry: simultaneous analysis of cytoplasmic proteins and metabolites on single cells.

Chem Sci

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Single-cell multi-dimensional analysis enables more profound biological insight, providing a comprehensive understanding of cell physiological processes. Due to limited cellular contents, the lack of protein and metabolite amplification ability, and the complex cytoplasmic environment, the simultaneous analysis of intracellular proteins and metabolites remains challenging. Herein, we proposed a multi-dimensional bio mass cytometry platform characterized by protein signal conversion and amplification through an orthogonal exogenous enzymatic reaction.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus.

Microb Cell Fact

January 2025

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.

View Article and Find Full Text PDF

Structural and functional insights into UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Brucella ovis.

Arch Biochem Biophys

January 2025

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza, GBsC (Unizar) Join Unit to CSIC, Zaragoza, Spain. Electronic address:

The peptidoglycan biosynthetic pathway involves a series of enzymatic reactions in which UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) plays a crucial role in catalyzing the conversion of UDP-N-acetylglucosamine-enolpyruvate (UNAGEP) to UDP-N-acetylmuramic acid. This reaction relies on NADPH and FAD and, since MurB is not found in eukaryotes, it is an attractive target for the development of antimicrobials. MurB from Brucella ovis, the causative agent of brucellosis in sheep, is characterized here.

View Article and Find Full Text PDF

Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris.

Enzyme Microb Technol

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:

Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!