Objective: Temporal intermittent rhythmic delta activity (TIRDA) is an EEG pattern characterized by sinusoidal trains of activity, ranging from 1 to 3.5 Hz, and well localized over the temporal regions. It is considered to be an indicator of temporal lobe epilepsy (TLE), but full agreement between different authors has still not been reached. The aim of this study was therefore to assess the role of TIRDA in localizing the epileptogenic zone, which was estimated using anatomo-electro-clinical correlations obtained from non-invasive pre-surgical investigations, in a large group of patients affected by drug-resistant partial epilepsy.
Methods: The occurrence of TIRDA was investigated using a prolonged Video-EEG recording of 129 patients affected by drug-resistant partial epilepsy that underwent a non-invasive pre-surgical protocol. Patients were divided into 3 groups: TLE only, extratemporal epilepsy, and multilobar epilepsy including temporal lobe. According to the epileptogenic zone identified using anatomo-clinical-radiological correlations, 3 different subgroups of TLE were identified: mesial, lateral, and mesio-lateral. Statistical analysis was performed in order to evaluate the relationship between TIRDA and the epileptogenic zone, and neuroradiological, neuropathological, EEG interictal and ictal findings.
Results: The pattern of TIRDA was observed in 52 out of the 129 (40.3%) patients studied. Significant correlations were found between TIRDA and: (i) mesial and mesio-lateral TLE; (ii) mesial temporal sclerosis; (iii) interictal epileptiform discharge localized over the anterior temporal regions; and (iv) 5-9 Hz temporal ictal discharge.
Conclusions: Our research shows that TIRDA plays a role in localizing the epileptogenic zone, suggesting that this pattern might be considered as an EEG marker of an epileptogenesis that involves the mesial structures of the temporal lobe. However, further studies investigating the relationship between intracranial EEG monitoring and simultaneous scalp EEG recording are needed in order to confirm our findings and improve our understanding of the significance of TIRDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1388-2457(02)00332-2 | DOI Listing |
Neurophysiol Clin
January 2025
Neuroscience Service, High Complexity El Cruce, "Nestor Kirchner" Hospital, ENYS. UNAJ. CONICET, Florencio Varela, Provincia de Buenos Aires, Argentina.
Objectives: The aim of this study is to describe a population of patients with drug resistant epilepsy who underwent stereoelectroencephalography (SEEG) for epilepsy presurgical evaluation in a high complexity public hospital in Argentina.
Methods: We included patients from 2014 to 2023. We conducted a retrospective study of patients with drug-resistant epilepsy admitted to the Video-EEG unit.
Neurosurg Focus Video
January 2025
Department of Neurosurgery.
Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. Electronic address:
Purpose: Concurrent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been used to assist in the presurgical localization of seizure foci in people with epilepsy. Our study aimed to examine the clinical feasibility of an optimized concurrent EEG-fMRI protocol.
Methods: The optimized protocol employed a fast-fMRI sequence (sampling rate = 10 Hz) with a spare arrangement, which allowed a time window of 1.
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands.
Purpose: In resective epilepsy surgery for drug-resistant focal epilepsy (DRE), good seizure outcome is strongly associated with visualization of an epileptogenic lesion on MRI. Standard clinical MRI (≤ 3 Tesla (T)) may fail to detect subtle lesions. 7T MRI enhances detection and delineation, the potential benefits of increasing field strength to 9.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the School of Biomedical Engineering (B.C., H.H., J.L., S.Y., Y.C., J.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurosurgery (S.J., J.H., L.C.), and PET Center (W.B.), Huashan Hospital, Fudan University, Shanghai, China.
Background And Purpose: Epilepsy, a globally prevalent neurological disorder, necessitates precise identification of the epileptogenic zone (EZ) for effective surgical management. While the individual utilities of FDG PET and FMZ PET have been demonstrated, their combined efficacy in localizing the epileptogenic zone remains underexplored. We aim to improve the non-invasive prediction of epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) by combining FDG PET and FMZ PET with statistical feature extraction and machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!