Background: Although a very close relationship between the amplitude of the first heart sound (S1) and the cardiac contractility have been proven by previous studies, the absolute value of S1 can not be applied for evaluating cardiac contractility. However, we were able to devise some indicators with relative values for evaluating cardiac function.
Methods: Tests were carried out on a varied group of volunteers. Four indicators were devised: (1) the increase of the amplitude of the first heart sound after accomplishing different exercise workloads, with respect to the amplitude of the first heart sound (S1)recorded at rest was defined as cardiac contractility change trend (CCCT). When the subjects completed the entire designed exercise workload (7000 J), the resulting CCCT was defined as CCCT(1); when only 1/4 of the designed exercise workload was completed, the result was defined as CCCT(1/4). (2) The ratio of S1 amplitude to S2 amplitude (S1/S2). (3) The ratio of S1 amplitude at tricuspid valve auscultation area to that at mitral auscultation area T1/M1 (4) the ratio of diastolic to systolic duration (D/S). Data were expressed as mean +/- SD.
Results: CCCT(1/4) was 6.36 +/- 3.01 (n = 67), CCCT(1) was 10.36 +/- 4.2 (n = 33), S1/S2 was 1.89 +/- 0.94 (n = 140), T1/M1 was 1.44 +/- 0.99 (n = 144), and D/S was 1.68 +/- 0.27 (n = 172).
Conclusions: Using indicators CCCT(1/4) and CCCT(1) may be beneficial for evaluating cardiac contractility and cardiac reserve mobilization level, S1/S2 for considering the factor for hypotension, T1/M1 for evaluating the right heart load, and D/S for evaluating diastolic cardiac blood perfusion time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149375 | PMC |
http://dx.doi.org/10.1186/1475-925x-1-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!