The mushroom shaped outer spike protein of influenza, neuraminidase, was first discovered nearly 60 years ago. Its importance in viral replication was soon recognised both at the point of viral release from the cell and also enabling passage of virus through nasal fluid to reach the cell. The enzyme active site was identified by x-ray crystallography, allowing an atomic study of interaction of enzyme with the sialic acid substrate. Analogues could then be identified and synthesized and became a focused target for antivirals. With the current threat of bioterrorism and the potential for the emergence of a new pandemic strain in the near future, efforts are underway to develop more potent second-generation anti-neuraminidase inhibitors with enhanced protective and therapeutic effects. Here we review older and newer neuraminidase inhibitors and the role that they will play in the fight against influenza in its epidemic and pandemic face.

Download full-text PDF

Source
http://dx.doi.org/10.1177/095632020201300401DOI Listing

Publication Analysis

Top Keywords

influenza neuraminidase
8
neuraminidase inhibitors
8
millennium antivirals
4
antivirals pandemic
4
pandemic epidemic
4
epidemic influenza
4
inhibitors mushroom
4
mushroom shaped
4
shaped outer
4
outer spike
4

Similar Publications

Unlabelled: Neuraminidase (NA)-specific antibodies contribute to immunity against influenza. While studies have demonstrated increased NA inhibiting (NAI) antibody titers after vaccination with egg-derived inactivated influenza vaccines (eIIV), the response to cell culture-derived (c) IIV has not been reported.

Methods: An immunogenicity sub-study was performed within a clinical trial comparing the effectiveness of egg, cell, and recombinant hemagglutinin (HA)-derived influenza vaccines during the 2018-2019 and 2019-2020 influenza seasons.

View Article and Find Full Text PDF

Identification of a broad-inhibition influenza neuraminidase antibody from pre-existing memory B cells.

Cell Host Microbe

December 2024

Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Identifying broadly reactive B precursor cells and conserved epitopes is crucial for developing a universal flu vaccine. In this study, using influenza neuraminidase (NA) mutant probes, we find that human pre-existing NA-specific memory B cells (MBCs) account for ∼0.25% of total MBCs, which are heterogeneous and dominated by class-unswitched MBCs.

View Article and Find Full Text PDF

Antiviral Agents: Structural Basis of Action and Rational Design.

Subcell Biochem

December 2024

Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.

View Article and Find Full Text PDF

Introduction: To assess the susceptibility of epidemic influenza viruses to the four most used neuraminidase inhibitors (NAIs) during the 2023-24 influenza season in Japan, we measured the 50% inhibitory concentration (IC) of oseltamivir, peramivir, zanamivir, and laninamivir in virus isolates from the sample of 100 patients.

Methods: Viral isolation was done using specimens obtained before and after treatment, with the type/subtype determined by RT-PCR using type- and subtype-specific primers. IC values were determined by a neuraminidase inhibition assay using a fluorescent substrate.

View Article and Find Full Text PDF

Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China.

BMC Genomics

December 2024

The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.

The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!