9-O-Acetylation is a common sialic acid modification, expressed in a developmentally regulated and tissue/cell type-specific manner. The relevant 9-O-acetyltransferase(s) have not been isolated or cloned; nor have mechanisms for their regulation been elucidated. We previously showed that transfection of the GD3 synthase (ST8Sia-I) gene into Chinese hamster ovary (CHO)-K1 cells gave expression of not only the disialoganglioside GD3 but also 9-O-acetyl-GD3. We now use differential display PCR between wild type CHO-K1 cells and clones stably expressing GD3 synthase (CHO-GD3 cells) to detect any increased expression of other genes and explore the possible induction of a 9-O-acetyltransferase. The four CHO mRNAs showing major up-regulation were homologous to VCAM-1, Tis21, the KC-protein-like protein, and a functionally unknown type II transmembrane protein. A moderate increase in expression of the FxC1 and SPR-1 genes was also seen. Interestingly, these are different from genes observed by others to be up-regulated after transfection of GD3 synthase into a neuroblastoma cell line. We also isolated a CHO-GD3 mutant lacking 9-O-acetyl-GD3 following chemical mutagenesis (CHO-GD3-OAc(-)). Analysis of the above differential display PCR-derived genes in these cells showed that expression of Tis21 was selectively reduced. Transfection of a mouse Tis21 cDNA into the CHO-GD3-OAc(-) mutant cells restored 9-O-acetyl-GD3 expression. Since the only major gangliosides expressed by CHO-GD3 cells are GD3 and 9-O-acetyl-GD3 (in addition to GM3, the predominant ganglioside type in wild-type CHO-K1 cells), we conclude that GD3 enhances its own 9-O-acetylation via induction of Tis21. This is the first known nuclear inducible factor for 9-O-acetylation and also the first proof that 9-O-acetylation can be directly regulated by GD3 synthase. Finally, transfection of CHO-GD3-OAc(-) mutant cells with ST6Gal-I induced 9-O-acetylation specifically on sialylated N-glycans, in a manner similar to wild-type cells. This indicates separate machineries for 9-O-acetylation on alpha2-8-linked sialic acids of gangliosides and on alpha2-6-linked sialic acids on N-glycans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M210565200 | DOI Listing |
In Vivo
December 2024
Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.
View Article and Find Full Text PDFLiver Int
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.
Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).
Front Mol Neurosci
November 2024
Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
This paper explores the physiological consequences of decreased expression of GD3 synthase (GD3S), a biosynthetic enzyme that catalyzes the synthesis of b-series gangliosides. GD3S is a key factor in tumorigenesis, with overexpression enhancing tumor growth, proliferation, and metastasis in various cancers. Hence, inhibiting GD3S activity has potential therapeutic effects due to its role in malignancy-associated pathways across different cancer types.
View Article and Find Full Text PDFNewborn (Clarksville)
March 2024
Global Newborn Society, Clarksville Maryland, United States of America.
Cancer Genomics Proteomics
October 2024
The London Breast Institute, Princess Grace Hospital, London, U.K.
Expression of disialoganglioside GD2 in normal tissues is primarily limited to the central nervous system, peripheral sensory nerve fibers, dermal melanocytes, lymphocytes, and mesenchymal stem cells. Its widespread overexpression in various cancer types allows it to be classified as a tumor-associated antigen with potential diagnostic and therapeutic implications. This article reviews the synthesis pathways of GD2 and its role in cancer cell adhesion, proliferation, and metastasis with a focus on breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!