Critical developmental and gene expression profiles were charted during the formation of shoots from root explants in Arabidopsis tissue culture. Shoot organogenesis is a two-step process involving pre-incubation on an auxin-rich callus induction medium (CIM) during which time root explants acquire competence to form shoots during subsequent incubation on a cytokinin-rich shoot induction medium (SIM). At a histological level, the organization of shoot apical meristems (SAMs) appears to occur during incubation on SIM about the time of shoot commitment, i.e. the transition from hormone-dependent to hormone-independent shoot development. Genes involved in SAM formation, such as SHOOTMERISTEMLESS (STM) and CLAVATA1 (CLV1), were upregulated at about the time of shoot commitment, while WUSCHEL (WUS) was upregulated somewhat earlier. Genes required for STM expression, such as CUP-SHAPED COTYLEDON 1 and 2 (CUC1 and 2) were upregulated prior to shoot commitment. Gene expression patterns were determined for two GFP enhancer trap lines with tissue-specific expression in the SAM, including one line reporting on CUC1 expression. CUC1 was generally expressed in callus tissue during early incubation on SIM, but later CUC1 was expressed more locally in presumptive sites of shoot formation. In contrast, the expression pattern of the enhancer trap lines during zygotic embryogenesis was more localized to the presumptive SAM even in early stages of embryogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-313x.2002.01479.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!