An increasing range of chemicals appears to be capable of causing skin sensitization as a result of their capacity to undergo air oxidation (autoxidation) with the consequent formation of reactive species such as epoxides and hydroperoxides. In this small investigation, the ability of linalool, a common fragrance ingredient, to cause such effects was quantified using the local lymph node assay before and after careful purification by vacuum distillation. The commercially available grade of linalool (97% purity) was shown to be a weak skin sensitizer. Various impurities, including linalool oxide, dihydrolinalool, epoxylinalool, 3-hexenyl butyrate and 3,7-dimethyl-1,7-octadiene-3,6-diol were identified and were completely removed (except for the dihydrolinalool remaining at 1.4%) and the re-purified linalool retested. Neither linalool or dihydrolinalool are protein-reactive compounds. The sensitization potency of the re-purified linalool sample was considerably reduced, but not entirely eliminated, suggesting either that an allergenic impurity could be very quickly reformed by mechanisms of activation or that certain potent undetectable allergens remained. Both possibilities are consistent with what is understood of the chemistry and composition of commercially available linalool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-0536.2002.470307.x | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Cellular Toxicology, Faculty of Science, Department of Biology, Badji Mokhtar University, Annaba, Algeria.
Food Chem
January 2025
SAAS Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China. Electronic address:
The flavor evolution of yellow peaches during ripening was investigated using a gas chromatography-mass spectrometer (GC-MS), metabolomics, and electronic sensoristic techniques. Of the 41 volatiles quantified, 13 increased the intensity of the aroma based on the odor activity values (OAVs). Additionally, 142 non-volatile compounds were identified.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador.
This study presents the first chemical and enantioselective analyses of essential oils (EOs) derived from the leaves of two endemic species, Cuatrec. and (Kunth) Cass., from Loja, Ecuador.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Research Council of Italy, Institute of Biomolecular Chemistry (CNR-ICB), Via P. Gaifami 18, 95126 Catania, Italy.
L. (Myrtaceae), widely valued for its aromatic leaves and essential oil, plays a significant role in traditional medicine and modern phytotherapy. The variability in its essential oil composition and bioactive compounds across different populations underscores its potential for novel therapeutic discoveries and agricultural utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!