This study used transgenic mice, in which expression of a bacterial nitroreductase (ntr) gene was linked to the expression of olfactory marker protein (OMP). The nitroreductase enzyme is thus expressed in mature chemosensory neurons of these OMP-ntr transgenic mice, and converts the pro-drug CB1954 to a cytotoxic form, specifically killing these neurons. Systemic injections of the pro-drug led to the ablation of receptor neurons in both the main olfactory and vomeronasal epithelia. Due to the anatomical separation of the epithelia, however, when the pro-drug was administered by intranasal infusion only the receptors of the main olfactory epithelium were destroyed. This procedure resulted in a profound deficit in olfactory investigation and discrimination in a habituation-dishabituation test, whereas the pregnancy blocking effect of male pheromones, which is mediated via the vomeronasal system was unaffected. OMP-ntr mice receiving intranasal infusion of pro-drug had not recovered any significant main olfactory function at 24 days following treatment. This novel technique could potentially be applied to selectively ablate olfactory receptor neurons expressing a particular olfactory receptor by linking its expression to that of the nitroreductase enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2002.02303.xDOI Listing

Publication Analysis

Top Keywords

receptor neurons
16
olfactory receptor
12
transgenic mice
12
main olfactory
12
olfactory
8
neurons omp-ntr
8
omp-ntr transgenic
8
nitroreductase enzyme
8
intranasal infusion
8
neurons
6

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Introduction: This study discusses the various clinical profiles, investigatory findings, treatment responses, and prognosticating factors in seven cases of autoimmune encephalitis (AE).

Methods: The clinical records of seven AE patients admitted to the Neurology Department, SRM Medical College Hospital and Research Centre, Chennai, from July 2022 to December 2023 were retrospectively analyzed.

Results: The patients' ages ranged from 18 to 35, and all experienced seizures.

View Article and Find Full Text PDF

Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!