Cholinergic modulation of nucleus accumbens medium spiny neurons.

Eur J Neurosci

Department of Experimental Neurophysiology, Research Institute Neurosciences Vrije Universiteit, and Centre for Neurogenomics and Cognitive Research (CNCR) Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.

Published: December 2002

The rat nucleus accumbens contains acetylcholine-releasing interneurons, presumed to play a regulatory role in the electrical activity of medium spiny output neurons. In order to examine this issue in detail, we made electrophysiological recordings in rat nucleus accumbens slices. These experiments showed that gamma-aminobutyric acid-mediated inhibition of the output neurons might be facilitated by activation of nicotinic acetylcholine receptors, in addition to being suppressed via activation of muscarinic acetylcholine receptors. In contrast, glutamatergic excitation of output neurons appeared to be inhibited by activation of muscarinic acetylcholine receptors and to be insensitive to activation of nicotinic acetylcholine receptors. The spontaneous firing frequency of cholinergic neurons appeared to be under control of both a muscarinic and a nicotinic pathway in a bi-directional manner. Finally, we made paired recordings in which the functional connection between cholinergic neurons and output neurons was monitored. Driving the cholinergic neurons at physiological firing frequencies stimulated gamma-aminobutyric acid-mediated inhibition of the output neurons, via activation of nicotinic acetylcholine receptors. The onset of this effect was slow and lacked a fixed delay. These data indicate that activation of nicotinic acetylcholine receptors in rat nucleus accumbens may mediate the facilitation of gamma-aminobutyric acid-mediated inhibition of medium spiny output neurons. Possible mechanisms of neurotransmission, mediating this cholinergic modulation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.2002.02289.xDOI Listing

Publication Analysis

Top Keywords

output neurons
24
acetylcholine receptors
24
nucleus accumbens
16
activation nicotinic
16
nicotinic acetylcholine
16
medium spiny
12
rat nucleus
12
gamma-aminobutyric acid-mediated
12
acid-mediated inhibition
12
cholinergic neurons
12

Similar Publications

Diverse sources of inhibition serve to modulate circuits and control cell assembly spiking across various timescales. For example, in hippocampus area CA1 the competition between inhibition and excitation organizes spike timing of pyramidal cells (PYR) in network events, including sharp wave-ripples (SPW-R). Specific cellular-synaptic sources of inhibition in SPW-R remain unclear, as there are >20 types of GABAergic interneurons in CA1.

View Article and Find Full Text PDF

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Effects of exercise and transient estradiol exposure in middle-aged female rats.

Horm Behav

January 2025

Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Houston Methodist Research Institute, Houston, TX 77030, United States.

The benefits of estrogen treatment on cognition in middle-aged and older women are dependent on many factors, including the timing of treatment. Moreover, the potential interactive effects with other lifestyle factors, such as exercise, are poorly understood. In this study, we tested for lasting benefits of independent and combined treatment with estrogen and voluntary exercise initiated in midlife, using a rat model of menopause.

View Article and Find Full Text PDF

Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Curr Biol

January 2025

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.

View Article and Find Full Text PDF

Background: Healthy individuals demonstrate considerable heterogeneity upon dynamic quantitative sensory testing assessment of endogenous pain modulatory mechanisms. For those who stratify into a 'pro-nociceptive profile' cohort, consisting of inefficient conditioned pain modulation (CPM) and elevated temporal summation of pain (TSP), the optimal approach for balancing the net output of pain modulatory processes towards anti-nociception remains unresolved. In this translational healthy human and rat study, we examined whether descending modulation countered spinal amplification during concurrent application of a CPM and TSP paradigm alongside pupillometry since pontine activity was previously linked to functionality of endogenous pain modulatory mechanisms and pupil dilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!