Saccharomyces cerevisiae transformed with plasmids containing the barley alpha-amylase gene was cultured, and enzyme activity and cell density were monitored at various time intervals. Proteins in yeast extract and culture medium were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Western blots of intra- and extracellular proteins were sequentially probed with anti-amylase antibody and anti-rabbit horseradish peroxidase conjugate, followed by chemiluminescent detection. The enzyme activity of recombinant barley alpha-amylase secreted by the yeast clone DY150[pYEX-Amyl] showed a significant increase when the culture medium included glycerol as the carbon source. The enhancement reached a 4.5-fold increase at 120 hr, and the effect was strain-nonspecific. Intra- and extracellular proteins increased significantly with time in both the yeast clone and the control grown in YEPG (2% yeast extract, 1% bacto-peptone, 2% glycerol). Proteins in YEPD (2% yeast extract,1% bacto-peptone, 2% glucose) and YEPG cultures showed very different band patterns, indicating that the metabolic pathway was altered. Western blot analysis indicated that the recombinant amylase accumulated inside yeast cells, at a relatively low level, compared with that in the culture medium. The transcript level of the alpha-amylase gene was significantly increased in the clone cultured in YEPG. This investigation demonstrates that the use of glycerol as a carbon source for S. cerevisiae enhances the synthesis and secretion of the recombinant enzyme while suppressing cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1021186601208DOI Listing

Publication Analysis

Top Keywords

glycerol carbon
12
carbon source
12
culture medium
12
secretion recombinant
8
saccharomyces cerevisiae
8
barley alpha-amylase
8
alpha-amylase gene
8
enzyme activity
8
yeast extract
8
intra- extracellular
8

Similar Publications

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.

View Article and Find Full Text PDF

CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!