The sedimentation of cylindrical pollutant particles which fall through a fluid is investigated. Differing from previous research work, particle oscillation and effect of particle on the fluid are considered, and the torque exerted on a particle when viscous fluid flow around a particle is got through experiment and included in the numerical simulation. The computational results showed that the sedimentation velocities of particle increase slowly with the increase of particle aspect ratio phi. For disk-like particle, when the motion direction of particle is parallel to axis of particle, particle falls more slowly than the case of perpendicular to axis of particle; while for rod-like particle, it is inverse. For sedimentation of a crowd of high-frequency oscillating cylindrical particles with arbitrary initial orientation, both vertical velocity and horizontal velocity oscillate dramatically, the degree of oscillation of the former is stronger than the later. A crowd of particles fall more quickly than an isolated particle. Particles tend to strongly align in the direction of gravity. The computational results agreed well with the experimental ones and helpful for controlling of pollutant particles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

particle
13
pollutant particles
12
numerical simulation
8
sedimentation cylindrical
8
cylindrical pollutant
8
particles fall
8
axis particle
8
particles
6
sedimentation
4
simulation sedimentation
4

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.

View Article and Find Full Text PDF

Resolving Artifacts and Improving the Detection Limit in Circular Differential Scattering Measurement of Chiral and Achiral Gold Nanorods.

ACS Nano

January 2025

Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.

Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.

View Article and Find Full Text PDF

Dynamics of hydrogen shift reactions between peroxy radicals.

Phys Chem Chem Phys

January 2025

The Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Peroxy radicals are key intermediates in many atmospheric processes. Reactions between such radicals are of particular interest as they can lead to accretion products capable of participating in new particle formation (NPF). These reactions proceed through a tetroxide intermediate, which then decomposes to a complex of two alkoxy radicals and O, with spin conservation dictating that the complex must be formed in the triplet state.

View Article and Find Full Text PDF

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!