Helical sense bias induced by point chirality in cage compounds.

Angew Chem Int Ed Engl

Departamento de Química Orgánica, Facultad de Química, Campus de Espinardo Universidad de Murcia, Spain.

Published: April 2002

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1205::aid-anie1205>3.0.co;2-xDOI Listing

Publication Analysis

Top Keywords

helical sense
4
sense bias
4
bias induced
4
induced point
4
point chirality
4
chirality cage
4
cage compounds
4
helical
1
bias
1
induced
1

Similar Publications

Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.

View Article and Find Full Text PDF

Enveloped viruses have caused the majority of epidemics and pandemics over the past decade. Direct sensing of virus particles (virions) holds great potential for the functional analysis of enveloped viruses. Here, we explore a series of viral membrane-targeting amphipathic helical (AH) peptide-based molecular probes for the assessment of infectious titers of the human coronavirus 229E virus (HCoV-229E).

View Article and Find Full Text PDF

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Fiber-based strain sensors, as wearable integrated devices, have shown substantial promise in health monitoring. However, current sensors suffer from limited tunability in sensing performance, constraining their adaptability to diverse human motions. Drawing inspiration from the structure of the spiranthes sinensis, this study introduces a unique textile wrapping technique to coil flexible silver (Ag) yarn around the surface of multifilament elastic polyurethane (PU), thereby constructing a helical structure fiber-based strain sensor.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!