The binding of [(3)H]tyrosyl-PBAN28-33NH(2) to pheromone gland membranes of the moth Heliothis peltigera was investigated. The study describes the development of a pheromone biosynthesis-activating neuropeptide (PBAN) radioreceptor assay and demonstrates the presence of a putative PBAN binding site on the pheromone gland. It also describes synthesis of a radioligand and optimization of binding conditions with respect to membrane preparation, number of gland equivalents, kinetics of ligand binding and composition of the binding solution. Binding was found to be optimal when membranes were freshly prepared from frozen glands, incubated at a concentration of one gland equivalent per reaction tube in the presence of 10 mM HCO(3)(-) ions. Equilibrium of ligand binding was obtained after 20 min. Presence of other components such as NaCl, KCl or SH reagents did not have any effect on binding. Binding was found to be saturable, with a K(d) of 5.73 +/- 1.05 x 10(-6) M and a Bmax of 1.85 +/- 0.22 nmol/mg protein. Binding was effectively displaced by unlabeled PBAN1-33NH(2) and PBAN28-33NuEta(2) with a K(i) of 4.3 +/- 1.1 x 10(-6) M and 4.9 +/- 2.6 x 10(-6) M, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/pl00022366DOI Listing

Publication Analysis

Top Keywords

pheromone gland
12
binding
10
pheromone biosynthesis-activating
8
biosynthesis-activating neuropeptide
8
neuropeptide pban
8
heliothis peltigera
8
ligand binding
8
+/- 10-6
8
pheromone
5
gland
5

Similar Publications

The poplar moth, (Lepidoptera: Lyonetiidae), is widely distributed across Europe, Asia, and parts of Africa. It was first identified in Chile in 2015 and has since become a significant pest in the agricultural sector. Additionally, economic losses are further aggravated by the presence of pupae in nearby fruit orchards.

View Article and Find Full Text PDF

The identification of sex pheromones in native New Zealand moths has been limited, largely due to their minimal pest impact on agricultural ecosystems. The kōwhai moth, Uresiphita polygonalis maorialis, a native crambid, is known for its herbivory on Sophora spp. and Lupinus arboreus leaves.

View Article and Find Full Text PDF

Upregulation of olfactory-related neuropeptide transcripts in male Macrobrachium rosenbergii in correlation to pheromone perception from molting females.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; Nakhornsawan campus, Mahidol University, Nakhonsawan, Thailand. Electronic address:

Our previous studies revealed a mating attractant or possibly a pheromone released from molting reproductive mature female prawns, Macrobrachium rosenbergii, stimulates the expression of insulin-like androgenic gland hormones in a co-culture system. The released attractant is perceived by olfactory receptors with setae located on the short lateral antennules (slAn), which connect to the olfactory neuropil in the central nervous system (CNS) of male prawns. This neural signaling propagating through the CNS is mediated by at least four neuropeptides, namely neuropeptide F (NPF), short NPF (sNPF), tachykinin (TK), and allatostatin-A (ATS-A) whose transcripts have been detected in the present study.

View Article and Find Full Text PDF

Male tephritid fruit flies typically emit pheromones from rectal glands to attract mates. Consistent with this, virgin females of the cucumber fruit fly, Zeugodacus cucumis (French), were found to be attracted to volatiles emitted by crushed male rectal glands in Y-tube olfactometer bioassays. Electrophysiological studies identified several male rectal gland compounds that triggered responses in female antennae.

View Article and Find Full Text PDF

Pheromones play a pivotal role in chemical communication across various taxa, with protein-based pheromones being particularly significant in amphibian courtship and reproduction. In this study, we investigate the Emei music frog (Nidirana daunchina), which utilizes both acoustic and chemical signals for communication. Base on a de novo assembled genome of a male Emei music frog, we identify substantial expansion in four pheromone-related gene families associated with chemical communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!