Electroluminescence from single monolayers of nanocrystals in molecular organic devices.

Nature

Laboratory of Organic Optoelectronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge 02139, USA.

Published: January 2003

The integration of organic and inorganic materials at the nanometre scale into hybrid optoelectronic structures enables active devices that combine the diversity of organic materials with the high-performance electronic and optical properties of inorganic nanocrystals. The optimization of such hybrid devices ultimately depends upon the precise positioning of the functionally distinct materials. Previous studies have already emphasized that this is a challenge, owing to the lack of well-developed nanometre-scale fabrication techniques. Here we demonstrate a hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs). To isolate the luminescence processes from charge conduction, we fabricate a quantum-dot LED (QD-LED) that contains only a single monolayer of QDs, sandwiched between two organic thin films. This is achieved by a method that uses material phase segregation between the QD aliphatic capping groups and the aromatic organic materials. In our devices, where QDs function exclusively as lumophores, we observe a 25-fold improvement in luminescence efficiency (1.6 cd A(-1) at 2,000 cd m(-2)) over the best previous QD-LED results. The reproducibility and precision of our phase-segregation approach suggests that this technique could be widely applicable to the fabrication of other hybrid organic/inorganic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01217DOI Listing

Publication Analysis

Top Keywords

organic materials
12
organic
6
devices
5
materials
5
electroluminescence single
4
single monolayers
4
monolayers nanocrystals
4
nanocrystals molecular
4
molecular organic
4
organic devices
4

Similar Publications

Unlocking the Key to Photocatalytic Hydrogen Production Using Electronic Mediators for Z-Scheme Water Splitting.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths.

View Article and Find Full Text PDF

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Easily Water-Synthesisable Iron-Chloranilate Frameworks as High Energy and High-Power Cathodes for Sustainable Alkali-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.

Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!