NIH3T3 cells stably expressing the rat 5-hydroxytryptamine 2A (5-HT 2A) receptor (5500 fmol/mg) were used to explore further the capacity of structurally distinct ligands to elicit differential signaling through the phospholipase C (PLC) or phospholipase A 2 (PLA 2) signal transduction pathways. Initial experiments were designed to verify that 5-HT 2A receptor-mediated PLA 2 activation in NIH3T3 cells is independent from, and not a subsequent result of, 5-HT 2A receptor-mediated PLC activation. In addition, we also explored the extent of receptor reserve for the endogenous ligand, 5-HT, for both PLC and PLA 2 activation. Finally, we employed structurally diverse ligands from the tryptamine, phenethylamine, and ergoline families of 5-HT 2A receptor agonists to test the hypothesis of agonist-directed trafficking of 5-HT 2A receptor-mediated PLC and PLA 2 activation. To measure agonist-induced pathway activation, we determined the potency and intrinsic activity of each compound to activate either the PLA 2 pathway or the PLC pathway. The results showed that a larger receptor reserve exists for 5-HT-induced PLA 2 activation than for 5-HT-induced PLC activation. Furthermore, the data support the hypothesis of agonist-directed trafficking in NIH3T3-5HT 2A cells because structurally distinct ligands were able to induce preferential activation of the PLC or PLA 2 signaling pathway. From these data we conclude that structurally distinct ligands can differentially regulate 5-HT 2A receptor signal transduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.102.042184 | DOI Listing |
Ann Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China 100853. Electronic address:
This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biology, University of the Balearic Islands, Palma 07122, Spain. Electronic address:
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!