Members of the transforming growth factor beta superfamily of cell signaling polypeptides have attracted much attention because of their ability, from nematodes to mammals, to control cellular functions that in turn, regulate embryo development and tissue homeostasis (the transforming growth factors betas 95 (1990) 419). To understand the divergent evolution of the structures and functions of the transforming growth factor beta receptors (superfamily) we report here the cloning and characterization of an activin-like type I receptor gene from the oyster Crassostrea gigas (cgALR1). This 6 Kb gene encodes a 534 amino acid long protein consisting of a signal peptide, an extracellular ligand binding domain, a transmembrane region and an intracellular domain. The intracellular domain contains sequence motifs such as the GS box and EIF/V and RIKKTL boxes that are thought to be hallmarks of activin type I receptors. The protein sequence shares 67% amino acid identity with other serine/threonine kinase receptors in the most conserved kinase domain and 47-49% similarity with vertebrate type I receptors. The temporal expression pattern of cgALR1 transcripts was examined during early larval developmental stages. To gain insight into evolutionary diversification, phylogenetic analysis as well as an investigation of the genomic structure, including the promoter region of the cgALR1 gene were carried out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(02)01082-x | DOI Listing |
Mol Cancer
January 2025
Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China. Electronic address:
The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors.
View Article and Find Full Text PDFPLoS One
January 2025
School of Life Science, Inner Mongolia University, Hohhot, PR China.
Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFSex Med
December 2024
Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark.
Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.
Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.
Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!