AI Article Synopsis

  • The study highlights that while nuclear membranes and nuclear pore complexes (NPCs) are found in both plants and animals, their structure varies, with C. elegans NPCs being larger than those in yeast but comparable to higher eukaryotes.
  • Researchers developed a method for high-resolution imaging of C. elegans embryonic cells to reveal the presence of nuclear envelope proteins Ce-lamin and Ce-emerin near the inner nuclear membrane, with Ce-lamin also found in the nuclear interior.
  • The absence of Ce-lamin led to cell death, evidenced by significant nuclear changes, indicating that these nuclear envelope proteins are crucial for maintaining nuclear architecture and function in C. elegans.

Article Abstract

Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1047-8477(02)00516-6DOI Listing

Publication Analysis

Top Keywords

nuclear envelope
12
ce-lamin ce-emerin
12
nuclear
9
transmission electron
8
caenorhabditis elegans
8
elegans embryos
8
nuclear membranes
8
elegans nuclear
8
elegans
5
electron microscope
4

Similar Publications

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

Mechanical Force-Induced cGAS Activation in Carcinoma Cells Facilitates Splenocytes into Liver to Drive Metastasis.

Adv Sci (Weinh)

December 2024

Department of General Surgery, National-Local Joint Engineering Research Center of Biodiagnostic & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.

Liver metastasis is the main cause of cancer-related mortality. During the metastasis process, circulating carcinoma cells hardly pass through narrow capillaries, leading to nuclear deformation. However, the effects of nuclear deformation and its underlying mechanisms on metastasis need further study.

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) act as gateways across the nuclear envelope for molecular transport between the nucleus and the cytoplasm in eukaryotes. NPCs consist of several subcomplexes formed by multiple copies of approximately 30 different proteins known as nucleoporins (Nups). In the fission yeast Schizosaccharomyces pombe, the NPC structure is unique, particularly in its outer ring subcomplexes, where the cytoplasmic and nucleoplasmic outer rings are composed of distinct sets of proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!